85 resultados para acceptor binding energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromium-containing silica samples were obtained from soluble sodium silicate solutions in the presence of different chromium nitrate concentrations. Precipitation was carried out in ethanolic media. Gel precipitate was dried by liophylization and samples measured by transmission electron microscopy (TEM), X-ray energy-dispersive spectrometer, X-ray mapping, X-ray photoemission spectroscopy (XPS), and particle size analysis. Spherical chromium containing silica particles with 3.5% and 4.8% (at.%) of chromium were obtained. Particle size analysis results showed that with increased addition of chromium in sodium silicate solutions produces agglomerates whose sizes range from 1 to 0.2 μm. Chromium mapping and XPS results show that chromium oxide is preferentially segregated on particle surfaces. Chromium oxide was detected on particle surface with a binding energy of 576.77 ± 0.05 eV as obtained from XPS analysis. During the hydrolysis and condensation processes chromium oxide precipitates on the silica surface and it affects the silica chain size. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A scale independent approach that was proposed in [1], valid for weakly bound three-boson systems, is used to predict that the three-body molecular system 4He2-7Li supports an Efimov state [2] with binding energy close to 2.31 mK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lower bound masses of the ground-state relativistic three-boson system in 1 + 1, 2 + 1 and 3 + 1 spacetime dimensions are obtained. We have considered a reduction of the ladder Bethe-Salpeter equation to the lightfront in a model with renormalized two-body contact interaction. The lower bounds are deduced with the constraint of reality of the two-boson subsystem mass. It is verified that, in some cases, the lower bound approaches the ground-state binding energy. The corresponding non-relativistic limits are also verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mean-square radii of the triatomic molecules 4He 3, 4He 2- 6Li, 4He 2- 7Li, and 4He 2- 23Na were calculated using a renormalized three-body model with a pairwise Dirac-δ interaction, having as physical inputs only the values of the binding energies of the diatomic and triatomic molecules. Molecular three-body systems with bound subsystems were considered. The resultant data were analyzed in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scaling dependence of the recombination parameter as a function of the ratio between the energies of the atomic dimer and the most excited trimer states was derived. The scaling function tends to a unversal function in the limit of zero-range interaction or infinite scattering length. This paper reports on how one can obtain the trimer binding energy of a trapped atomic system, from the three-body recombination rate and the corresponding two-body scattering length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp 3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For light exotic nuclei modeled as two neutrons n and a core A, we report results for the two-neutron correlation functions and also for the mean-square radii, considering a universal scaling function. The results of our calculations for the neutron-neutron correlation functions are qualitatively consistent with recent data obtained for 11Li and 14Be nuclei. The root-mean-square distance in the halo of such nuclei are also consistent with data, which means that the neutrons of the halo have a large probability to be found outside the interaction range. Therefore the low-energy properties of these halo neutrons are, to a large extend, model independent as long as few physical input scales are fixed. The model is restricted to s-wave subsystems, with small energies for the bound or virtual states. For the radii we are also shown results for the 6He and 20C. All the interaction effects, as higher partial wave in the interaction and/or Pauli blocking effect are, to some extend, included in our model, as long as the three-body binding energy is supplied. © 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 and 3000 ) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs. © 2010 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deuteron binding energy and wave function are calculated by using the recently developed three-dimensional form of low-momentum nucleon-nucleon (NN) interaction. The homogeneous Lippmann-Schwinger equation is solved in momentum space by using the low-momentum two-body interaction, which is constructed from Malfliet-Tjon potential. The results for both, deuteron binding energy and wave function, obtained with low-momentum interaction, are compared with the corresponding results obtained with bare potential. © 2012 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)