115 resultados para Zeta potential measurements


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SnO2 supported membranes, presenting 3.0 nm average pore size, have been produced by sol casting on alumina tubular substrate using aqueous colloidal suspensions prepared by sol-gel route. The selectivity and flux throughout SnO2 membrane were analyzed by permeation experiments, using a laboratory tangential filtration pilot equipped with a monotubular membrane. To evaluate the effect of the surface charge at the membrane-solution interface, aqueous salt solutions (NaCl, Na2SO4, CaCl, and CaSO4) of different ionic strength have been filtered and the results correlated with the values of zeta potential measured at several pH. The results show that the retention coefficient is dependent on the electrolyte present in aqueous solution decreasing as: (dication, monoanion) > (monocation, monoanion) approximate to (monocation, dianion) > (dication, dianion). The surface charge and the cation adsorption capacity play a determinant role in these selectivity sequences. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the sol-gel process was used to prepare SnO2 supported membranes with an average pore size of 2.5 nm. The effects of salt concentration (NaCl or CaCl2) and of the pH of the aqueous solutions used on the flux and selectivity through the SnO2 membrane were analyzed by permeation experiments and the results interpreted taking account of the zeta potential values determined from the electrophoretic mobility of the SnO2 powder aqueous dispersion. The results show that the ion flux (Na+, Ca2+ and Cl-) throughout the membrane is determined by the electrostatic repulsion among these species and the surface charge at the tin oxide-solution interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical behavior of a coating of cobalt oxide on cold-rolled steel in alkaline sodium sulfate was Studied using the electrochemical techniques of open-circuit potential measurements and electrochemical impedance spectroscopy. The coating was prepared at different annealing temperatures ranging from 350 to 750 degreesC and characterized by SEM, EDX and XRD. Below 550 degreesC the composition of the coating was basically of Co3O4. At 750 degreesC CoO was formed and big cracks appeared on the film exposing an inner layer of iron oxides. Analysis of the EIS data is very difficult because of the complexity of the interface structure. It can be inferred that the charge transfer resistance of the coatings prepared at 350 and 450 C were higher than those for the coatings prepared at temperatures above 550 degreesC. (C) 2002 Published by Elsevier B.V. Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables oil response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12. an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nonocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vesicles prepared with synthetic amphiphiles (dioctadecyldimethylammonium bromide and chloride, dihexadecyl phosphate and its sodium salt) were obtained by sonication, ethanol injections, and chloroform injections. The hydrodynamic diameter of vesicles (Dh), estimated from the diffusivity measured by quasielastic light scattering, ranged from 230 to 3000 Å. The electrophoretic mobility (Um) was measured by free-flow electrophoresis. The zeta potential (ζ) and the degree of counterion dissociation (α) of the vesicles were calculated from Um and conductivity data, α decreased with increasing Dh of the vesicles, probably due to the decreasing headgroup area and the increasing counterion association needed to relax the surface electrostatic potential. The electrophoretic mobility was also calculated (Uc) according to an impenetrable, nonconducting sphere model with a spherically symmetric charge distribution approximation. Within the limits of the experimental error(s) of the (different) methods employed and the assumptions made in the calculations, the fact that the Um/Uc ratio ranged from 1.3 to 7.5 was considered to be a good agreement between the calculated and the experimental values. © 1990 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nucleation and growth model, which is usually applied to switching phenomena, is adapted for explaining surface potential measurements on the P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) copolymer obtained in a constant current corona triode. It is shown that the growth is one-dimensional and that the nucleation rate is unimportant, probably because surface potential measurements take much longer than the switching ones. The surface potential data can therefore be accounted for by a growth model in which the velocity of growth varies exponentially with the electric field. Since hysteresis loops can be obtained from surface potential measurements, it is suggested that similar mechanisms can be used when treating switching and hysteresis phenomena, provided that account is taken of the difference in the time scale of the measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. © 2012 by the authors; licensee MDPI, Basel, Switzerland.