53 resultados para Weather Conditions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under conservation tillage systems is critical to maintaining plant residues from previous crops on the soil surface. A technique called Hormesis aims to increase the amount of straw and also cause a delay in straw decomposition. Therefore, this study aimed to evaluate the agronomic characteristics of corn under no-tillage system subjected to Hormesis. The experiment was carried out at UNESP campus in the city of Botucatu, SP . The experimental was design in completely randomized blocks. The treatments based on the technique of Hormesis were : control (no application) , sub Gliphosate low dosage (12.5 g.ai.ha - 1 ) , sub Gliphosate average dosage (25 g. ai.ha - 1 ) , sub Gliphosate high dose (50 g. ai.ha -1 ), 2,4-D under low dose (100 g. ai.ha -1 ), 2,4-D sub average dosage (200 g. ai.ha -1 ) 2,4- D under high dosage (300 g. ai.ha -1 ) sub Verdict low dose (0.625 g. ai.ha -1 ) sub Verdict average dosage (1.25 g. ai.ha -1 ) , sub Verdict high dosage (2.5 g. ai.ha - 1 ) . In addition, the following characteristics were evaluated: plant height, first ear growth, stem diameter , ear length , number of rows per cob, cob diameter , , percentage of grains on the cob , mass of plant dry matter, and yield. The results showed that all the treatments showed no statistical difference, the maize was not affected with sub doses of herbicides applications under the field and weather conditions in which the experiment was conducted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The permanence of the corn grain in the field, after physiological maturity, is an important cause of crop losses, both in quantitative and qualitative aspect. By ceasing the supply of assimilated substances to grains, due to physiological maturity, the synthesis reactions are overcome by breathing, responsible for the maintenance of the living tissues of the grains, which occur at the expense of reserves accumulated during grain formation. In addition, there are losses from fungus and insects attack due to adverse weather conditions. Technological advances in recent decades, the develop of grain dryers with different capacities and efficiencies, has led to the early withdrawal of the product from the field, still damp, reducing spoilage. Moreover, the use of artificial drying systems can represent a significant cost to the producer. Thus, the present work aimed to study the effect of natural and artificial methods of drying on maize dry matter losses, for Botucatu, city of Sao Paulo state, Brazil. The cornfield production was conducted at the Experimental Farm “Lageado” and the experimental treatments were conducted in the Laboratory of Agricultural Products Processing, in the Department of Rural Engineering, where the drying systems were tested. The treatments were: shade (control), artificial with heated air, artificial unheated air and, drying attached to the plant. The following analyzes for quality monitoring were performed: weight test, thousand-grain weight test and, grain dry weight. The results showed significant loss in quality of drying beans attached to the plant, by assessing the dry matter loss and by the variation of the grain weight. The weight test showed that the worst performance was the artificial with heated air treatment. We used mathematical modeling techniques to describe the dry matter loss and adjusted the mathematical model to the experimental data analyzed. From the experimental data obtained during drying the grain attached to the plant, it was still possible to fit a regression model that estimates the loss of grain dry matter under the climate from Botucatu during the 2011/2012 harvest period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application technology shows many parameters related to the quality of the application, one is the droplet spectrum, which is influenced by the spray nozzles and the adjuvant used. Therefore, the objective of this work was estimate the behavior of the droplet spectrum generated with different nozzles and different adjuvants. The experiment was installed containing four solutions from different type adjuvant dilution, as vegetal oil, mineral oil, surfactant and drift reduction, which were applied with two nozzle, one pre-orifice flat fan (DG 8003 VS) and other of air induction flat fan (AI 8003 VS), totaling 8 treatments with 3 repetitions. The experiment was realized in ideal weather conditions for spraying. The treatments averages were compared using Confidence Interval at 95% probability and the correlations between variables were analyzed using Pearson at 5% of probability. The analysis of droplet spectrum showed different behavior for each adjuvant and nozzle. The surfactant treatment showed VMD superior for all treatments when sprayed with AI nozzles. For the %vol.<100 µm the lowest value found was for the AI nozzle in combination with the surfactant. The significant correlations found for the nozzles AI and DG were negative between VMD and %vol.<100 µm. It can be concluded that the values of DMV and %vol.<100 µm showed that the nozzle with pre-orifice have droplet spectrum more prone to drift. The surfactant showed to be the best drift reduction technique when combined with the AI nozzle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Arquitetura e Urbanismo - FAAC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geografia - IGCE