59 resultados para Wavelet Packet and Support Vector Machine
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for musical genre classification, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster for some applications. Experiments in two public datasets were conducted against Support Vector Machines and a Bayesian classifier to show the validity of our work. In addition, we have executed an experiment using very recent hybrid feature selection techniques based on OPF to speed up feature extraction process. © 2011 International Society for Music Information Retrieval.
Resumo:
Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this project the Pattern Recognition Problem is approached with the Support Vector Machines (SVM) technique, a binary method of classification that provides the best solution separating the data in the better way with a hiperplan and an extension of the input space dimension, as a Machine Learning solution. The system aims to classify two classes of pixels chosen by the user in the interface in the interest selection phase and in the background selection phase, generating all the data to be used in the LibSVM library, a library that implements the SVM, illustrating the library operation in a casual way. The data provided by the interface is organized in three types, RGB (Red, Green and Blue color system), texture (calculated) or RGB + texture. At last the project showed successful results, where the classification of the image pixels was showed as been from one of the two classes, from the interest selection area or from the background selection area. The simplest user view of results classification is the RGB type of data arrange, because it’s the most concrete way of data acquisition
Resumo:
This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)