177 resultados para Water absorption
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aims at the production of panels made from industrial waste -thermoplastic (Polypropylene - PP; Polyethylene - PE and Acrylonitrile Butadiene Styrene - ABS) reinforced with agro-industrial waste - pupunha palm waste (shells and sheaths). The properties of the panels were evaluated: density, thickness swelling, water absorption and moisture content. It was used the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. The best results in physical tests were treatments 1 (100% waste plastic), 6 (60% plastic waste and 40% waste of pupunha) and 7 (70% waste plastic and 30% waste of pupunha). The best results in the mechanical tests were treatments 3 (30% de residuos plasticos e 70% de residuos da pupunha), 4 (40% de residuos plasticos c 60% de residuos da pupunha) and 5 (50% de residuos plasticos e 50% de residuos da pupunha). For mechanical tests it was concluded that the results of modulus of rupture and of modulus of elasticity the best treatments were those with more fibers. In the tensile tests perpendicular to the surface, it is clear that using more waste plastics leads to the best results. It was concluded that the waste can be used as raw material for the production of alternative materials mainly in civil construction and furniture industries, and it can be employed in urban or rural environment, given the concept of eco-efficient products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Caiua Sandstones, sedimentary Cretaceous rocks, have a grain specific gravity nearly that of quartz, its main mineralogical component. The remaining properties, such as the apparent dry density, apparent and effective porosity, water absorption and saturation voids, present high values, but decrease with depth. -from English summary
Resumo:
Pigeonpea protein concentrate was prepared from full-fat decorticated raw flour. The water holding capacity of pigeonpea flour of decorticated seeds is 75% and its oil absorption capacity a 30%. The water holding capacity of the protein concentrate is three times the dry weight. The oil absorption capacity of the concentrate was 1,29 mL oil/g protein. The whipping capacity of the pigeonpea flour and its protein concentrate were evaluated.
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.
Resumo:
Effect of extrusion parameters was studied on the expansion index, specific volume, water absorption index (WAI) and water solubility index (WSI) of expanded yam snacks. The central composite design was used to study the parameters effect. It was verified three levels of temperature in the barrel (100, 115 and 130°C), three levels of screw speed (163, 204 and 245 rpm) and three levels of flour moisture (12, 15 and 18%). The results showed that expansion properties (expansion index and specific volume) depend on flour moisture and extrusion temperature. The WSI was dependant of three parameters. Higher levels of temperature and screw speed increase the water solubility index (WSI). The studied parameters did not influence the water absorption index (WAI).
Resumo:
Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.
Resumo:
The current technological development made by the absorption refrigeration system is an economic and ambient alternative in comparison to the vapor cycle, possessing an advantage that uses thermal energy that is less noble. Chillers of absorption are used widely in the air conditioned industries, because they can be set in motion through hot water vapors that burn natural gas, solar energy, biomasses amongst others instead of electricity. These systems allow it to reduce the tips of electric demand and balance the rocking of energy demand. This work has had a main objective to simulate a absorption refrigeration cycle with lithium-water bromide solution using biogas of sanitary landfill, and mixtures of this with natural gas. These results shown to the energy viability of the system burning biogas and its mixtures with natural gas in the generator, when compared with equipments that uses traditional fuels (natural gas, oil diesel, amongst others), for operation the commercial chillers with 15 kW of the refrigeration capacity and temperature of the water in the entrance of 14°C and the exit of 7°C.
Resumo:
Lotus (Nelumbo nucifera Gaertn.) is a perennial herbaceous aquatic ornamental plant with potential to be used as a new cut flower for the Brazilian ornamental market. It shows exotic and attractive flowers and has a strong market appeal, once it is known as a symbol of purity, holiness and immortality. However, flowers have a short-vase life. Lotus flower stem exudes a large quantity of sticky milky sap from the cut surface, which is produced in laticifers, spatially associated with both xylem and phloem. It has been reported that latex coagulates on the cut surface preventing or reducing water absorption and reducing flowers' vaselife, requiring treatments to stop the flow of latex. The objective of this study was to report observations of lotus postharvest characteristics and evaluate treatments to overcome latex flow. The experiment was conducted as a complete randomized design with three replications of four stems in each vase and eight treatments; a control (distilled water), pretreatment of cut stem-ends with hot water (40° C/1 minute), boiling water (3 seconds), isopropyl alcohol 90% (10 minutes) or citric acid (pH = 2.8/1h) and, maintenance of stems in a holding solution of Tween® 20 (0.01%), citric acid (200 mg L-1) or Tween® 20 (0.01%) plus citric acid (200 mg L-1). Treatments had no significant effect on flowers vaselife which was only about three days, although isopropyl alcohol, hot and boiling water completely stopped latex flow. Cut stem-ends pretreated with citric acid (pH = 2.8/1 h) showed a significantly higher relative water content of petals compared to others treatments. The senescence symptom of lotus cut flowers was mainly characterized by abscission of turgid petals and dehiscence of stamens without any visual change of petal color and brightness.
Resumo:
Soft linings are materials used to reduce the tension and forces of mastication, forming all or part of the fitting surface of a denture. This study evaluated the effect of thermocycling on water absorption, solubility, Shore A hardness and color stability of permanent soft liner materials. MATERIAL AND METHODS: Two chemically activated soft liner materials (Sofreliner S; GC Reline Ultrasoft) were tested. Twenty cylindrical specimens (30.0 x 1.0 mm) were prepared for measuring water absorption and solubility and another twenty (30.0 x 3 mm) for analyzing Shore A hardness and color stability. Color was measured by a spectrophotometer before and after 2000 thermocycles. A one-way ANOVA test and Tukey test at a 5% confidence level (p<0.05) were performed. RESULTS: The results did not show statistical differences for water absorption, solubility or color stability. The post-thermocycling Shore A hardness values were significantly higher than those before the treatment. CONCLUSION: Thermocycling of soft liner materials increased Shore A hardness.
Resumo:
Casing layer is one of the most important components of Agaricus spp. production and it directly affects mushroom productivity, size and mass. The aim of this study was to evaluate potential raw materials as a casing layer and their effect on Agaricus brasiliensis productivity. Raw materials from Brazil with potential use were selected and characterized, and the most promising ones were tested as casing layers for mushroom yield. Evaluated raw materials included lime schist, vermiculite, eucalyptus sawdust, sand, São Paulo peat, Santa Catarina peat, subsoil and charcoal. Particle size, porosity and water absorption in relation to mushroom yield for casing layers were determined. Lime schist, an alternate casing layer to peat, is presented and the effects of the casing layer on the mushroom yield are discussed. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The region of Alfenas, in the state of Minas Gerais, Brazil, is predominantly constituted of Pre-Cambrian rocks with well developed alteration profiles in association with colluvial and alluvial sediments. No study to date has examined in detail its potential use in the ceramic industry. The scarce knowledge of its mineralogical and technological properties limits its value and consequently its industrial use. Until now, these clay materials have been used in a rudimental manner, in small scale in the fabrication of red tiles. The present study aimed at analyzing these clays mineralogically (X-ray diffraction), chemically (major and minor elements by X-ray fluorescence and organic carbon analysis) and technologically (pressing granulometric distribution; mechanical resistence; water absorption, apparent porosity; linear firing shrinkage; color of firing and others) in order to better understand the raw material and develop adequate technological applications. The best results of ceramic properties were the samples with higher organic content (more plastic clays) and higher values of Al2O3 (kaolinite and gibbsite) and Fe2O3 as well lower SiO2 content and finer grain size which contribute to a better sinterization.
Resumo:
Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO 2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol. © 2011 Ceramic Society of Japan.