87 resultados para Variational approximation
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The unitary pole approximation is used to construct a separable representation for a potential U which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The exact bound-state wave function is employed. U is chosen as the potential which binds the proton in the 1d5/2 single-particle orbit in F-17. Using the separable representation derived for U, and assuming a separable Yamaguchi potential to describe the 1d5/2 neutron in O-17, the energies and wave functions of the ground state (1+) and the lowest 0+ state of F-18 are calculated in the Gore-plus-two-nucleons model solving the Faddeev equations.
Resumo:
The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
Many variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.
Resumo:
Positronium scattering off a hydrogen target has been studied employing a three-state positronium model close-coupling approximation (CCA) with and without electron exchange. Elastic, excitation and quenching cross sections are reported at low and medium energies. The effect of electron exchange is found to be significant at low energies. The ratio of quenching to the total cross section (the conversion ratio) approaches the value of 0.25 with increase of energy, as expected.
Resumo:
A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique that reduces the equilibrium solution, in general obtained from the 2D Grad-Shafranov equation, to a 1D problem in the radial flux coordinate rho. The plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schluter and the neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until the flux surface averaged toroidal current density (J(T)), converges to within a specified tolerance for a given pressure profile and prescribed boundary conditions. The convergence criterion is applied between the (J(T)) profile used to calculate the equilibrium through the variational procedure and the one that results from the equilibrium and given by the sum of all current components. The ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently determined loop voltage in order to give the prescribed value of the total plasma current. The bootstrap current is estimated through the full matrix Hirshman-Sigmar model with the viscosity coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio tokamak Experimento Tokamak Esferico. A comparison among different models for the bootstrap current estimate is also performed and their possible Limitations to the self-consistent calculation is analysed.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.
Resumo:
It is demonstrated, contrary to various claims, that the phase shifts calculated via variational principles involving the Green function may exhibit anomalous behavior. These anomalies may appear in variational principles for the K matrix (Schwinger variational principle) of potential V, for (K-V) (Kohn-type and Newton variational principles), and other variational principles of higher order (Takatsuka-McKoy variational principle).
Resumo:
The formalism of supersymmetric quantum mechanics is used to determine trial functions in order to obtain eigenvalues for the Lennard-Jones (12, 6) potential from variational method. The superpotential obtained provides an effective potential which can be directly comparable to the original one.
Resumo:
We study the interaction of resonances with the same order in families of integrable Hamiltonian systems. This can occur when the unperturbed Hamiltonian is at least cubic in the actions. An integrable perturbation coupling the action-angle variables leads to the disappearance of an island through the coalescence of stable and unstable periodic orbits and originates a complex orbit plus an isolated cubic resonance. The chaotic layer that appears when a general term is added to the Hamiltonian survives even after the disappearance of the unstable periodic orbit. © 1992.