51 resultados para Ultrasonic waves.
Resumo:
Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation linearly coupled to an extra linear dissipative one. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the net field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value u(0) of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L, u(0)), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.
Resumo:
The solutions of a renormalized BCS model are studied in two space dimensions for s, p and d waves for finite-range separable potentials. The gap parameter, the critical temperature T-c, the coherence length xi and the jump in specific heat at T-c as a function of the zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the present model yields a small xi and large T-c, appropriate for high-T-c cuprates. The specific heat, penetration depth and thermal conductivity as functions of temperature show universal scaling for p and d waves.
Resumo:
A critical review of gravitational wave theory is made. It is pointed out that the usual linear approach to the gravitational wave theory is neither conceptually consistent nor mathematically justified. Relying upon that analysis it is argued that-analogously to a Yang-Mills propagating field, which must be nonlinear to carry its gauge charge-a gravitational wave must necessarily be nonlinear to transport its own charge-that is, energy-momentum.
Resumo:
The theory of optical dispersive shocks generated in the propagation of light beams through photorefractive media is developed. A full one-dimensional analytical theory based on the Whitham modulation approach is given for the simplest case of a sharp steplike initial discontinuity in a beam with one-dimensional striplike geometry. This approach is confirmed by numerical simulations, which are extended also to beams with cylindrical symmetry. The theory explains recent experiments where such dispersive shock waves have been observed.
Resumo:
We apply the subtractive renormalization method to the nucleon-nucleon interaction at Next-to-Next-to-Leading order (NNLO). Here we show the results for some uncoupled peripheral waves.
Resumo:
The effect of including a van Hove singularity in the density of state of a renormalized BCS equation in s and d waves and its appropriateness in describing some properties of high-Tc cuprates in the weak-coupling region are studied in two space dimensions. The specific heat and knight shift as a function of temperature exhibit scaling below the critical temperature in d wave. We also study the jump in the specific heat at the critical temperature Tc in s and d waves, which can have values significantly higher than the standard BCS values and which increases with Tc, as experimentally observed in many d-wave high-Tc materials. The experimental results on the specific heat and knight shift of the Y-123 system are compared with the theoretical predictions.