318 resultados para Tilapia mariae
Resumo:
The structure of the heterochromatic bands in mitotic chromosomes of the important tropical aquaculture species of tilapia, Oreochromis niloticus, was investigated by the combination of the C-banding technique, chromosomal digestion with two restriction endonucleases and fluorescence in situ hybridization (FISH) of two satellite DNAs (SATA and SATB). The tilapia chromosomes presented heterochromatic bands in the centromeres and in the short arms of almost all chromosomes that were differentially digested by the restriction endonucleases HaeIII and EcoRI. FISH of SATA showed that the satellite sequence is distributed in the centromeric region of all chromosomes of tilapia. FISH also revealed an intense hybridization signal for SATB in only one chromosome pair, but less intense signals were also present in several other pairs. The digestion of tilapia chromosomes by HaeIII and EcoRI was positively correlated with the position of SATA and SATB in chromosomes as revealed by FISH. The results obtained may be useful in future molecular and genetic studies of tilapias.
Resumo:
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Muscle growth in Nile tilapia (Oreochromis niloticus) was studied focusing on histochemical, ultrastructural, and morphometric characteristics of muscle fibers. Based on body length (cm), we studied four groups: G1 = 1.36+/-0.09, G2 = 3.38+/-0.44, G3 = 8.90+/-1.47, and G4 = 28.30+/-3.29 (mean+/-S.D.). All groups showed intense reaction to NADH-TR in subdermal fibers and weak or no reaction in deep layer fibers. In G3 and G4, an intermediate layer was also observed with fibers presenting weak reaction; in G4, groups of fibers with intense reaction were observed in the subdermal region. The myosin ATPase (m-ATPase) activities were acid-stable and alkali-labile in subdermal fibers; most deep layer fibers were alkali-stable and acid-labile. Intermediate fibers were acid-labile and alkali-stable. Two fiber populations were observed near deep muscle layer: one large presenting weak acid- and alkali-stable and the other small alkali-stable.During growth, muscle fiber hypertrophy was more evident in intermediate and white fibers for G3 and G4. However, in these groups, the presence of fiber diameters less than or equal to21 mum suggested that there is still substantial fiber recruitment, confirmed by ultrastructural study, but hypertrophy is the main mechanism contributing to increase in muscular mass. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The Nile tilapia (Oreochromis niloticus) has received increasing scientific interest over the past few decades for two reasons: first, tilapia is an enormously important species in aquaculture worldwide, especially in regions where there is a chronic shortage of animal protein; and second, this teleost fish belongs to the fascinating group of cichlid fishes that have undergone a rapid and extensive radiation of much interest to evolutionary biologists. Currently, studies based on physical and genetic mapping of the Nile tilapia genome offer the best opportunities for applying genomics to such diverse questions and issues as phylogeography, isolation of quantitative trait loci involved in behaviour, morphology, and disease, and overall improvement of aquacultural stocks. In this review, we have integrated molecular cytogenetic data for the Nile tilapia describing the chromosomal location of the repetitive DNA sequences, satellite DNAs, telomeres, 45S and 5S rDNAs, and the short and long interspersed nucleotide elements [short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)], and provide the beginnings of a physical genome map for this important teleost fish. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Repetitive DNAs have been extensively applied as physical chromosome markers on comparative studies, identification of chromosome rearrangements and sex chromosomes, chromosome evolution analysis, and applied genetics. Here we report the characterization of repetitive DNA sequences from the Nile tilapia (Oreochromis niloticus) genome by construction and screening of plasmid library enriched with repetitive DNAs, analysis of a BAC-based physical map, and hybridization to chromosomes. The physical mapping of BACs enriched with repetitive sequences and C(o)t-1 DNA (DNA enriched for highly and moderately repetitive DNA sequences) to chromosomes using FISH showed a predominant distribution of repetitive elements in the centromeric and telomeric regions and along the entire length of the largest chromosome pair (X and Y sex chromosomes) of the species. The distribution of repetitive DNAs differed significantly between the p arm of X and Y chromosomes. These findings suggest that repetitive DNAs have had an important role in the differentiation of sex chromosomes. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraiba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of Sao Jose dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
RECAW - CNPq