99 resultados para Target organisms
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Considering the great ecological importance of the cyanobacteria and the need for more detailed information about these organisms in Brazilian waters, this paper provides taxonomic information about the unicellular cyanobacteria flora in lagoon systems along the coastal plains of Rio Grande do Sul State. Sampling was performed in different freshwater bodies along the eastern (Casamento Lake area) and western (near the city of Tapes) banks of the Patos Lagoon (30º40' S-30º10' S and 50º30' W-51º30' W). The samples were collected once in the rainy season and once in the dry season (from May 2003 to December 2003) using a plankton net (25 µm mesh) in pelagic and littoral zones, and by squeezing the submerged parts of aquatic macrophytes. Thirty one species belonging to the families Synechoccocaceae (7 taxa), Merismopediaceae (12 taxa), Chamaesiphonaceae (1 taxon), Microcystaceae (4) and Chroococcaceae (7 taxa) were identified. Among these species, five are reported for the first time in Rio Grande do Sul State: Chamaesiphon amethystinus (Rostafinski) Lemmermann, Chroococcus minimus (Keissler) Lemmermann, Coelomoron pusillum (Van Goor) Komárek, Coelosphaerium kuetzingeanum Naegeli, and Cyanodictyon tubiforme Cronberg.
Resumo:
We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q(2) in the x -> 1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F-2 and F-L structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q(2).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Embora não haja cultivos comerciais de milho geneticamente modificado no Brasil, o efeito de híbridos de milho Bt sobre inimigos naturais e artrópodos de solo deve ser avaliado antes da liberação aos produtores. Assim, ensaios foram conduzidos durante uma safra em duas localidades. Os híbridos de milho modificado geneticamente 7590-Bt11 e Avant-ICP4 foram comparados com seus respectivos isogênicos não transgênicos. Os artrópodes foram avaliados através de observação direta nas plantas e armadilhas de alçapão. de modo geral, não se observaram diferenças entre as populações de tesourinha (Dermaptera: Forficulidae), joaninhas (Coleptera: Coccinellidae), percevejo-pirata (Coleoptera: Anthocoridae), carabídeos (Carabidae), cicindelídeos (Cicindelidae) e aranhas (Araneae). Também não houve diferença no parasitismo de ovos de Helicoverpa zea (Boddie) por Trichogramma sp. (Hymenoptera: Trichogrammatidae). Assim, milho geneticamente modificado expressando as proteínas inseticidas Cry1A(b) e VIP 3A não causa redução nas populações dos principais predadores e parasitóides.
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.
Resumo:
Antimicrobial peptides (AMPs) are effector molecules of innate immune systems found in different groups of organisms, including microorganisms, plants, insects, amphibians and humans. These peptides exhibit several structural motifs but the most abundant AMPs assume an amphipathic alpha-helical structure. The alpha-helix forming antimicrobial peptides are excellent candidates for protein engineering leading to an optimization of their biological activity and target specificity. Nowadays several approaches are available and this review deals with the use of combinatorial synthesis and directed evolution in order to provide a high-throughput source of antimicrobial peptides analogues with enhanced lytic activity and specificity.
Resumo:
The occurrence of mycoplasma-like bodies in the axial duct and intracellular canaliculli from hypopharyngeal glands of bees (Meliponinae and Apinae) is described. Since they are not found within cells and due to the absence of cellular alterations in the infected glands it is suggested that micro-organisms are not pathogenic to the bees.
Resumo:
Positronium formation and target excitation in positron-helium scattering have been investigated using the close-coupling approximation with realistic wave functions for the positronium and helium atoms. The following eight states have been used in the close-coupling scheme: He(1s1s), He(1s2(1)s), He(1s2(1)p), He(1s3(1)s), He(1s3(1)p), Ps(1s), Ps(2s), and Ps(2p), where Ps stands for the positronium atom. Calculations are reported of differential cross sections for elastic scatering,, inelastic target excitation to He(1s2(1)s) and He(1s2(1)p) slates, and rearrangement transition to Ps(1s), Ps(2s), and Ps(2p) states for incident positron energies between 40 and 200 eV. The coincidence parameters for the transition to the He(1s2(1)p) state of helium are also reported and briefly discussed. [S1050-2947(98)05101-4].