119 resultados para TIN OXIDE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós nanométricos SnO2.Nb2O5 foram estudados para o desenvolvimento de sensores de etanol. Estes pós foram preparados pelo método Pechini, caracterizados quanto à sua morfologia por difração de raios X, determinação de área superficial específica por BET e Microscopia Eletrônica de Transmissão e foram submetidos a testes de sensibilidade ao vapor de etanol. Foi estabelecida uma correlação entre a microestrutura do material, os efeitos do dopante e a resposta do sensor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CaSnO3 was synthesized by the polymeric precursor method, using different precursor salts as (CH3COO)(2)Ca. H2O, Ca(NO3)(2). 4H(2)O, CaCl2. 2H(2)O and CaCO3, leading to different results. Powder precursor was characterized using thermal analysis. Depending on the precursor different thermal behaviors were obtained. Results also indicate the formation of carbonates, confirmed by IR spectra. After calcination and characterization by XRD, the formation of perovskite as single phase was only identified when calcium acetate was used as precursor. For other precursors, tin oxide was observed as secondary phase.
Resumo:
The effects of La2O3 on the properties of (Zn, Co, Ta) doped SnO2 varistors were investigated in this study. The samples with different La2O3 concentrations were sintered at 1400 degrees C for 2 h and their properties were characterized by XRD, SEM, I-V and impedance spectroscopy. The grain size was found to decrease from 13 pm to 9 gm with increasing La2O3 content. The addition of rare earth element leads to increase the nonlinear coefficient and the breakdown voltage. The enhancement was expected to arise from the possible segregation of lanthanide ion due to its larger ionic radius to the grain boundaries, thereby modifying its electrical characteristics. Furthermore, the dopants such as La may help in the adsorption of O' to O '' at the grain boundaries characteristics. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Luminescent SnO2: x%mol Er3+ (x=0.1-2.0) thin films have been spin coated on borosilicate and silica substrates from water colloidal suspensions that could be prepared containing up to 40% in weight SnO2 nanocrystalline powders. High Resolution Transmission Electron Microscopy results show the well known SnO2 cassiterite structure and nanocrystallites around 10 nm in diameter, corroborating results from X-ray diffraction. Mono and multi layers have been prepared from the stable colloidal suspensions and films thickness was observed to increase linearly, up to 200 nm, with the colloidal suspensions nanoparticles amount. Excitation and emission spectra have been measured and Er3+ ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration lower than 0.05 mol%. Er3+ ions also appear segregated at the grains surface for higher doping concentration. The optical parameters (refractive index, thickness and propagating modes) of a waveguide sample were measured at 632.8 and 543.4 nm by the prism coupling technique. A monomodal waveguide was obtained with attenuation loss of 3.5 dB/cm along a 2.5 cm optical path.
Resumo:
Tin oxide, SnO2. is a very used compound in industry and one of its uses is as varistor. For the current requirements of the technology is necessary a strict control of the chemical purity and the particle size of the raw material; for that reason the great interest that exists at the moment to develop synthesis methods that allow to get these requirements. In this work, ceramic powders of the Sn-Co-Nb-Ti-Al system using the controlled precipitation and polymeric precursor (Pechini) methods were synthesized. The raw material obtained was characterized using X-ray diffraction (XRD), thermal analysis (DTA/FG) and scanning electron microscopy (SEM). The sintering samples shown a good varistor behavior with non-linear coefficient (alpha) values similar to 22, and Er 2083 V/cm(2). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in a study of the growth stages of Langmuir-Blodgett (LB) films of polyaniline and a neutral biphosphinic ruthenium complex, namely mer-[ RuCl3 (dppb)(py)] (dppb = 1,4-bis(diphenylphosphine) buthane, py = pyridine), Rupy. The LB films were deposited onto indium-tin-oxide substrates and characterized with atomic force microscopy. From the granular morphology exhibited by the films one could infer growth processes inside and outside the grains. Growth outside was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of about 2.7. As one would expect, inside the grains the morphology is close to a Euclidian surface with fractal dimension of about 2.
Resumo:
The electrical properties of tin oxide varistors doped with CoO, Nb2O5 and Cr2O3, were investigated using the impedance spectroscopy technique with the temperature ranging from 25 to 400 degrees C. The impedance data, represented by means of Nyquist diagrams, show two time constants with different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. The Arrhenius plots show two slopes with a turnover at 200 degrees C for both the higher and lower frequency time constants. This behavior can be related with the decrease of minor charge carrier density. The barrier formation mechanism was associated with the presence of Cr-Sn at the surface, which promotes the adsorption of the O' and O species which are in turn proposed as being responsible for the barrier formation. (C) 1998 American Institute of Physics. [S0021-8979(98)04719-7]
Resumo:
Tin oxide nanoparticles prepared by an aqueous sol-gel method were deposited by dip-coating on fluorozirconate glass, ZBLAN (53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF) to improve its resistance against wet corrosion. The aqueous leaching of uncoated and SnO2-coated fluorozirconate glass was studied by X-ray photoemission spectroscopy (XPS) and it was shown that even an ultra thin tin dioxide film provides good protection of the glass surface against the bulk propagation of the hydrolytic attack.
Resumo:
SnO2 based ceramics doped with 1.0 mol% ZnO, 1.0 mol% CoO, 0.1 mol% WO3 and 0.05 mol% Cr2O3 show varistor behavior with nonlinear coefficient alpha = 33, breakdown electric field E-B = 12.5 kV/cm, leakage current I = 0.63 mA/cm(2) and average grain size of 1.52 mu m. Experimental evidence shows that the addition of Cr2O3 improves the nonlinear properties of the samples significantly, the impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the samples doped with Cr2O3. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The influence of La2O3, Pr2O3 and CeO2 on a new class of polycrystalline ceramics with nonlinear properties based on SnO2, was investigated. La2O3 and Pr2O3 were found to precipitate at the grain boundary region, causing a considerable increase in the nonlinear behavior. It was found that CeO2 forms a solid solution in the bulk but. unlike La2O3 and Pr2O3, it does not increase the nonlinear behavior. A higher nonlinear coefficient of similar to80 was obtained for La2O3-doped SnO2-based systems. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Antimony doped tin oxide thin films were deposited on glass by a chemical route derived from Pechini method. Particular emphasis was given to the microstructure of crystallized films. Crystalline phase formation was studied by grazing incident X-ray diffraction and by thermal analyses. Scanning electron microscopy was carried out for microstructure characterization, surface roughness was observed using scanning tunneling microscope and the optical transmittance measurements were performed in the wavelength range of 200-800 nm. (C) 2002 Kluwer Academic Publishers.