60 resultados para Synthesis conditions
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The optimized conditions for the preparation of a new manganese porphyrinosilica-template material are reported. The manganese porphyrinosilica-template was prepared by the sol-gel process, by the reaction of -SO2Cl groups present in the phenyl rings of MnTDC(SO2Cl)PPCl with 3-aminopropyltriethoxysilane. The reaction produces a precursor porphyrinopropylsilyl species, which were then polymerized with tetraethoxysilane. The presence of manganese porphyrin on xerogel is confirmed by ultraviolet visible absorption spectroscopy and thermogravimetric analysis (TGA). The prepared materials have surface areas between 19 and 674 m2 g-1. Electron spectroscopy imaging of the materials show that manganese distribution in the xerogel is uniform. Both manganese(III) porphyrinosilica-template and a similar iron(III) porphyrinosilica-template can catalyze the epoxidation of cyclooctene using iodozylbenzene as oxygen donor. The metalloporphyrinosilica-template presents catalytic activity similar to that of metaloporphyrin in solution. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.
Resumo:
New Linear Matrix Inequalities (LMI) conditions are proposed for the following problem, called Strictly Positive Real (SPR) synthesis: given a linear time-invariant plant, find a constant output feedback matrix Ko and a constant output tandem matrix F for the controlled system to be SPR. It is assumed that the plant has the number of outputs greater than the number of inputs. Some sufficient conditions for the solution of the problem are presented and compared. These results can be directly applied in the LMI-based design of Variable Structure Control (VSC) of uncertain plants. ©2008 IEEE.
Resumo:
Mangoes in the Brazilian semi-arid stands out in the national scenario due to high yields and fruit quality, and also to the possibility of all-year production taking advantage of the climatic conditions as well as management technique (irrigation, pruning and growth regulators application) for plant growth and blossom control. Paclobutrazol soil drench applied is normally used for production management of mangoes. This research deals with the evaluation of the effect of foliar applied growth regulators to mango, cultivar 'Kent', as regard to their efficiency for blossom management, in order to allow off season mango production. Three growth regulators (prohexadione-Ca, trinexapac-ethyl and chlormequat chloride) were foliar applied, at two dosages and compared to paclobutrazol applied as soil-drench. In order to compare the effects of the treatment, data were recorded related to panicle emission (percentage and length), period of time until blossom and production, yield (number and plant weight) and post-harvest quality of the fruit (total soluble solids, titratable acidity, pH, firmness, flesh and skin color and appearance). The results showed that prohexadione-Ca and chlormequat chloride induced a 15-day early harvest, while paclobutrazol, alone or combined with prohexadione-Ca, allow to harvest 25 days in advance, when compared to trinexapac-ethyl and control trees. Growth regulators foliar applied and paclobutrazol applied as soil-drench delayed mangoes fruit ripening in post-harvest.
Resumo:
Magnesium complex hydrides as Mg 2FeH 6 are interesting phases for hydrogen storage in the solid state, mainly due to its high gravimetric and volumetric densities of H2. However, the synthesis of this hydride is not trivial because the intermetallic phase Mg2Fe does not exist and Mg and Fe are virtually immiscible under equilibrium conditions. In this study, we have systematically studied the influence of the most important processing parameters in reactive milling under hydrogen (RM) for Mg 2FeH 6 synthesis: milling time, ball-to-powder weight ratio (BPR), hydrogen pressure and type of mill. Low cost 2Mg-Fe mixtures were used as raw materials. An important control of the Mg 2FeH 6 direct synthesis by RM was attained. In optimized combinations of the processing parameters, very high proportions of the complex hydride could be obtained. © (2011) Trans Tech Publications.
Resumo:
Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine-chitosan derivatives (DEAEx-CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15-CH and DEAE25-CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE-chitosan-based nanoparticles for gene delivery. © 2013 IOP Publishing Ltd.
Resumo:
The biological activity of some new mixed silver-phosphane-thio-ligand complexes, with 1:1:2, 1:1:1 and 1:2:1 (Ag:phospine:ligand) compositions, have been examined. Ten compounds were prepared using a series of silver(I) salts [AgX, where X = NO3, ClO4, PF6 and Br], tertiary phosphines and the ligands thi-osemicarbazide, 2-(propan-2-ylidene) hydrazinecarbothioamide, and thiazolidine-2-thione. The syntheses were carried out under ambient conditions, and the ten complexes obtained were found to be light stable. All 10 compounds were characterized by elemental analysis, FTIR, and NMR spectroscopy, whereas nine compounds were characterized by X-ray diffraction analysis. The anti-proliferative activities were evaluated by minimum inhibitory concentration (MIC: lg/mL) in an aqueous suspension system and they all show promising potential activity against selective strains of Gram-positive and Gram-negative bacteria, fungous and Mycrobaterium tuberculosis H37Rv. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transparent monoliths and films of urea cross-linked tripodal siloxane-based hybrids (named tri-ureasils) were prepared by the sol-gel process, under controlled atmosphere (inside a glove box) and ambient conditions and their structure and optical features were compared. X-ray diffraction data point out that all the materials are essentially amorphous and Si-29 NMR reveal an increase in the condensation degree (0.97) for the hybrids prepared under controlled atmosphere relatively to that found for those prepared under ambient conditions (0.84-0.91). The tri-ureasils are white light emitters under UV/Visible excitation (from 250 to 453 nm) being observed for the composites prepared inside the glove box a significant enhancement (60-80 %) of the absorption coefficient and higher emission quantum yield values (similar to 0.27 and similar to 0.20 for monoliths and films, respectively) relatively to those synthesized under ambient condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A phase diagram of the pseudo-ternary Aerosol OT (AOT) + n-butanol/n-heptane/water system, at a mass ratio of AOT/n-butanol = 2, is presented. Conductivity measurements showed that within the vast one-phase microemulsion region observed, the structural transition from water-in-oil to oil-in-water microemulsion occurs continuously without phase separation. This pseudo-ternary system was applied to the synthesis of carbon-supported Pt 70Fe30 nanoparticles, and it was found that nanoparticles prepared in microemulsions containing n-butanol have more Fe than those prepared in ternary microemulsions of AOT/n-heptane/water under similar conditions. It was verified that introducing n-butanol as a cosurfactant into the AOT/n-heptane/water system lead to complete reduction of the Fe ions that allowed obtaining alloyed PtFe nanoparticles with the desired composition, without the need of preparing functionalized surfactants and/or the use of inert atmosphere. © 2007 American Chemical Society.
Resumo:
One-pot multicomponent synthesis of tetrahydropyridine derivatives between aniline derivatives, benzaldehyde and two different β-keto ester (methyl and ethyl acetoacetate) using niobium pentachloride as catalyst under mild conditions, providing good yields.