96 resultados para Sympathetic nervous system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
INTRODUCTION: The autonomic nervous system (ANS) could be investigated in a noninvasive way by the heart rate variability analysis (HRV) which has contributed to several health areas such as physiotherapy. OBJECTIVE: To gather information regarding the use of HRV on physiotherapy aims at providing an update of the findings for the area on journals of national circulation. MATERIALS AND METHODS: The journals of national circulation classified as greater than B2 or B2 and with free access and complete texts in some internet sites were searched on 21 area WebQualis resulting on selection of Revista Brasileira de Fisioterapia, Fisioterapia e Pesquisa and Fisioterapia em Movimento using the keywords: autonomic nervous system, sympathetic nervous system, physiotherapy and heart rate variability. RESULTS: The search resulted in 19 articles being 17 clinical trials and two case reports. CONCLUSION: The HRV has been used as a resource of interventions evaluation, as pathological conditions common to clinical practice investigation and to physiological conditions interpretation in physiotherapy. The HRV is principally used to the cardiorespiratory specialty of physiotherapy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chronic intermittent hypoxia (CIH) has been identified as a relevant risk factor for the development of enhanced sympathetic outflow and arterial hypertension. Several studies have highlighted the importance of peripheral chemoreceptors for the cardiovascular changes elicited by CIH. However, the effects of CIH on the central mechanisms regulating sympathetic outflow are not fully elucidated. Our research group has explored the hypothesis that the enhanced sympathetic drive following CIH exposure is, at least in part, dependent on alterations in the respiratory network and its interaction with the sympathetic nervous system. In this report, I discuss the changes in the discharge profile of baseline sympathetic activity in rats exposed to CIH, their association with the generation of active expiration and the interactions between expiratory and sympathetic neurones after CIH conditioning. Together, these findings are consistent with the theory that mechanisms of central respiratory–sympathetic coupling are a novel factor in the development of neurogenic hypertension.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nitric oxide (NO) is a free radical gas, inorganic, which has seven electrons of nitrogen and oxygen eight, possessing an unpaired electron. This radical is produced from L-arginine by a reaction mediated by the enzyme NO synthase. NO it is about a radical of who acts abundant on a variety of biological processes, particularly when produced by endothelial cells plays a significant role in cardiovascular control, as a modulator of peripheral vascular resistance and platelet aggregation. This free radical has also a neurotransmitter and mediator of the immune system. NO kidney function has been considered in many physiological functions such as: (a) regulation of hemodynamics and glomerular function tubuloglomerular, (b) participation in pressure natriuresis (c) maintaining medullar perfusion (d) inhibiting sodium reabsorption tubular, and (e) acting as a modulator of the activity of the sympathetic nervous system. Given these functions, the occurrence of its deficiency is associated with chronic kidney disease (CKD) in vasoconstriction and consequently glomerular hypertension, high blood pressure (HBP), proteinuria and progression of renal dysfunction. This work has the scope to describe the role of NO in renal physiology and pathophysiology of CKD.
Resumo:
In this study, we investigated an interaction between noradrenergic and cholinergic pathways of the medial septal area (MSA) on the control of water intake and urinary electrolyte excretion by means of injection of their respective agonists. Noradrenaline (a nonspecific α-adrenergic agonist) and clonidine (an α2-adrenergic agonist), but not phenylephrine (an α1-adrenergic agonist), induced natriuresis and kaliuresis. α-Adrenergic activation had no effect on the natriuresis and kaliuresis induced by carbachol (a cholinergic agonist) and it inhibited the antinatriuresis and antikaliuresis induced by isoproterenol (a ß-adrenergic agonist). Interactions related to volume excretion are complex. α-Adrenergic activation induced a mild diuresis and inhibited the antidiuresis induced by isoproterenol, but phenylephrine combined with carbachol induced antidiuresis. The water intake induced by carbachol was inhibited by clonidine and noradrenaline, but not phenylephrine. These results show an asymmetry in the interaction between α-adrenergic and cholinergic receptors concerning water intake and electrolyte excretion. © 1992.
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Central cholinergic activation by pilocarpine induces salivation dependent on the integrity of forebrain areas. The present work investigates the autonomic mediation of this salivation. Pilocarpine (500 nmol/rat) was injected into the lateral ventricle (LV) of tribromoethanol-anesthetized adult male rats. Preweighed cotton balls were inserted into the oral cavity and weighed again 7 min later. ol-adrenoceptor antagonists (3-50 mu mol/kg) prazosin (alpha(1)), yohimbine (alpha(2)) or propranolol (beta) injected intraperitoneally (i.p.) produced, 80%, 20% and 0% inhibition respectively of the LV pilocarpine-induced salivation. Intracerebroventricular injections (160 nmol) of the antagonists did not alter the effects of pilocarpine injected into the LV. Bilateral section of chorda tympani nerve or bilateral sympathetic cervical ganglionectomy produced 0% and 40% inhibition of pilocarpine-induced salivation, respectively. Ganglionectomy did not alter salivation induced by i.p, injection of pilocarpine (4 mu mol/kg). The results indicate that there is a large sympathetic contribution to the salivation induced by central cholinergic activation. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system. (c) 2007 Elsevier B.V. All rights reserved.