89 resultados para Suspended solids removal
Resumo:
Longitudinal changes in composition, abundance, and distribution of copepods were studied at the transition zone of Paranapanema River-Jurumirim Reservoir (SP, Brazil). The interchange of biotic material between marginal lakes and the river system was also examined. Water samples were obtained from 6 stations along a stretch of 13 km of the Paranapanema River, from an upstream reach with high water velocity up to the river mouth into Jurumirim Reservoir. Two other sites in lateral lakes were also sampled. Nine copepod taxa were identified: 3 calanoids (Argyrodiaptomus furcatus Sars, Notodiaptomus iheringi Wright, and N. conifer Sars) and 6 cyclopoids (Eucyclops Claus, Microcyclops Claus, Mesocyclops longisetus Thiébaud, Thermocyclops decipiens Fischer, T. minutus Lowndes, and Paracyclops Claus). Harpacticoids were also collected. Calanoid and cyclopoid nauplii and copepodids, and harpacticoids were the most abundant organisms. In general, there was a longitudinal decrease in copepod abundance, whereas an increase was detected near the lakes. The abundance of most copepods was inversely correlated with current velocity and suspended solids. Higher abundance was observed in the river main course during the rainy season, during which there is a higher connectivity between the lakes and the main river. This promotes exportation of biologic material from marginal lakes to the river system, a biotic exchange reflecting the importance of marginal lakes to the river community structure.
Resumo:
To address daily fluctuations in electricity demands, the quantities of water passing through the turbines of hydropower plants can vary significantly (up to fourfold) during a 24-h cycle. This study evaluates the effects of hourly variations in water discharges on the limnological conditions observed in two below-dam river stretches. The study reservoirs, Capivara and Taquaruçu, are the 9th and 10th reservoirs in a cascade of dams in the Paranapanema River in south-east Brazil. The reservoirs exhibit different trophic conditions, water retention times, thermal regimes and spillway positions. Capivara Reservoir is deeper, meso-eutrophic, with a high water retention time and hypolimnetic discharges (32 m) varying between 500 and 1400 m3 s-1. In contrast, Taquaruçu Reservoir is relatively shallow, oligo-mesotrophic, and has a low retention time, with water discharges varying between 500 and 2000 m3 s-1. Its turbine water intake zone also is more superficial (7 m). For two periods of the year, winter and summer, profiles of limnological measurements were developed in the lacustrine (above-dam site) zones of the reservoirs, as well as in the downstream river stretches (below-dam site). In both cases, the sampling was carried out at 4-h intervals over a complete nictemeral cycle. The results demonstrated that the reservoir operating regime (water discharge variations) promoted significant differences in the conditions of the river below the dams, especially for water velocity, turbidity, and nutrient and suspended solids concentrations. The reservoir physical characteristics, including depth, thermal stratification and outlet structure, are also key factors influencing the limnology and water quality at the below-dam sampling sites. In the case of Capivara Reservoir, for example, the low dissolved oxygen concentration (<5.0 mg L-1) in its bottom water layer was transferred to the downstream river stretches during the summer. These study results demonstrated that it is important to continue such investigations as a means of verifying whether or not these high-amplitude/low-frequency variations could negatively affect the downstream river biota. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd.
Resumo:
Studies to determine suitable levels of intensification are essential for developing sustainable aquaculture. The objective of this study was to evaluate the quality of effluents discharged from ponds stocked with 10 (D10), 20 (D20), 40 (D40), and 80 (D80) postlarvae of Macrobrachium amazonicum/m2. Intake and effluent water samples were taken throughout a 5.5-mo grow-out cycle. In that study, twelve 0.01-ha earthen ponds were stocked postlarvae with 0.01g. Average water exchange rate was 15%/d; water was discharged from the bottom of the ponds. Prawns were fed a commercial feed with 38% crude protein according to their biomass (3-10%) and the concentration of dissolved oxygen (DO). In our research, temperature, turbidity, total suspended solids, conductivity, DO, pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-ammonia, N-nitrite, N-nitrate, N-Kjeldahl nitrogen, total phosphorus, and soluble orthophosphate were measured every 15d throughout the experiment in the early morning (0630 to 0730h). Turbidity was lower in D10 than in D20 and D40 and total phosphorus was higher in D80 than in D10 and D20. An analysis of principal components comparing treatments and intake water showed three groups: intake, D10 and a cluster of D20, D40, and D80. On the basis of the water characteristics found in our study it appears that the farming of M. amazonicum is likely to have a low environmental impact, at least up to a stocking density of 80prawns/m2. © by the World Aquaculture Society 2013.
Resumo:
The effects of artificial substrate and night-time aeration on the culture of Macrobrachium amazonicum were evaluated in 12 ponds stocked with 45 prawns m-2. A completely randomized design in 2 × 2 factorial scheme with three replicates was used. The combination of factors resulted in four treatments: with substrate and aeration (SA), with substrate and without aeration (SWA), without substrate and with aeration (WSA) and without substrate and aeration (WSWA). The presence of substrate in SA and SWA treatments reduced suspended particles (seston) by ~17.3% and P-orthophosphate by ~50%. The use of aerator (WSA and SA treatments) significantly (P < 0.05) increased the concentration of dissolved oxygen, suspended particles and nutrients in the pond water. These results indicate that the effect of substrate on turbidity and total suspended solids (TSS) values is opposite to the effect of the aerator. The aerators in semi-intensive grow-out M. amazonicum farming lower water quality because they increased the amount of detritus and nutrients in the pond water. On the other hand, the use of artificial substrate reduces turbidity values, chlorophyll a, TSS and P-orthophosphate concentrations. Therefore, the combination of substrate addition and night-time aeration is not interesting because they have opposite effects. © 2013 John Wiley & Sons Ltd.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)