206 resultados para Steam Trains
Resumo:
Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2 and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2 particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An experiment with 400 laying hens Hy Line with 26 weeks of age was conducted to compare the performance of laying hens fed during four cycles of 28 days with diets containing soybean meal (SM) plus soybean oil (SBM+oil), whole extruded soybean (ESB) and whole steam toasted soybean (TSB). A completely design randomized blocks was used, with 10 treatments and five replicates and eight laying hens in each experimental unit. The treatments consisted on the replacement of SBM per ESB and TSB at the levels 0, 25, 50, 75 and 100%; and as control the SBM with or without addition of oil. The results obtained showed that the hens were able to regulate the feed intake to maintain the energy intake only at lower energetic levels, however they tended to over intake energy with the increase of energy levels of the diets. The addition of oil or soybeans in the diets improved feed: gain ratio, however worsened the energy efficiency in relation to the diet without oil. The processing of soybean provided differences on the performance of laying hens and the ESB showed to be superior to TSB. The hens had higher use of the oil added to the soybean meal (SBM + oil) and ESB in relation to TSB. However, the values of AMEn obtained for the ESB were 12% higher, in average, to those determined for the SBM + oil and for the TSB.
Resumo:
This experiment was conducted to compare the performance of 1260 chicks fed diets containing soybean meal plus soybean oil (SBM + oil), whole extruded soybean (ESB) and whole steam toasted soybean (TSB), with two protein levels. A complete randomized design was used, with six treatments and 3 replicates of each sex. The treatments consisted of a factorial arrangement 2 x 3 x 2 to test three soybean types (SBM + oil, ESB and TSB), two protein levels (optimum and suboptimum) and two sexes. From 1 to 49 days of age, the tested soybean types did not affect the diet intake. However, ESB provided higher weight gain in relation to SBM + oil, but it did not differ from TSB. The feed:gain ratio obtained with ESB and TSB was better in relation to SBM + oil. There was no difference between the nutritional value of TSB and ESB, because they provided similar performance to the birds.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms underlying the fade of the tetanic contraction induced by pancuronium were studied in vitro by means of myographical and electrophysiological techniques in the extensor digitorum longus muscle of the rat. Pancuronium (0.5 mu mol/l) induced a complete fade of the tetanic contraction while leaving the twitch unaffected. At the same concentration it decreased the amplitude and increased the tetanic rundown of trains of endplate potentials (e.p.ps) evoked in the frequency of 50 Hz. The electrophysiological changes induced by pancuronium were due to decreases in both quantal sizes and quantal contents of the e.p.ps. The former effect was the result of a postsynaptic competitive action and the latter of a presynaptic inhibitory action of that compound. The decrease in quantal. content affected the e.p.ps starting from the first in the train and became larger during the generation of the sequence of e.p.ps. This intensified their tetanic rundown. It is concluded that the fade of the tetanic contraction induced by pancuronium is due to a summation of pre- and postsynaptic actions and, therefore, not only to an increase in the tetanic rundown of e.p.ps. Possible explanations for the distinct abilities of neuromuscular blockers in affecting tetani and twitches in a differential manner are also discussed.
Resumo:
In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.
Resumo:
With the large penetration of the natural gas into the Brazilian energy structure, industries such as paper mills and chemical plants are analyzing the feasibility of implementing cogeneration schemes appropriate to this fuel. The analysis of the energy demand patterns of a chemical company from the photographic sector revealed the possibility of using combined cycles or diesel engine cogeneration schemes keeping the existing compression refrigeration units and steam or gas cycle cogeneration systems with absorption refrigeration units. In terms of economic attractiveness, an analysis based on the method of the internal rate of return was performed. The results indicated that the schemes composed by reciprocating engines and combined cycle with compression chillers, as well as the gas cycle scheme with absorption chiller, present return periods of up to 3 years, showing that the investment in cogeneration could be of interest for this plant. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work, we investigated the formation of porous silica matrix obtained by hydrothermal treatment under saturated steam condition from Pyrex (R) glass. This investigation was carried out by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray powder diffractometry (XRD) and Raman microscopy. We observed the presence of connected and homogeneously distributed pores in a non-crystalline silica phase and a detectable interface between silica and remnant glass phases resulting in a framework similar to asymmetric membranes. The results indicate that the process of phase separation takes place at lower temperature than that of glass-transition on the surface of the glass phase. Essential reaction between water and silica at supercritical condition together with the formation and leaching of soluble phase contribute to obtain porous silica matrix, (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper presents a methodology for the study of a molten carbonate fuel cell co-generation system. This system is applied to a dairy industry of medium size that typically demands 2100 kW of electricity, 8500 kg/h of saturated steam (P = 1.08 MPa) and 2725 kW of cold water production. Depending on the associated recuperation equipment, the co-generation system permits the recovery of waste heat, which can be used for the production of steam, hot and cold water, hot and cold air. In this study, a comparison is made between two configurations of fuel cell co-generation systems (FCCS). The plant performance has been evaluated on the basis of fuel utilisation efficiency and each system component evaluated on the basis of second law efficiency. The energy analysis presented shows a fuel utilisation efficiency of about 87% and exergy analysis shows that the irreversibilities in the combustion chamber of the plant are significant. Further, the payback period estimated for the fuel cell investment between US$ 1000 and US$ 1500/k-W is about 3 and 6 years, respectively. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The composition of the essential oil from leaves of Cryptocarya mandioccana has been determined by chromatographic fractionation and GC-FID, GC-MS and C-13 NMR analyses, yielding the identification of 64 compounds with predominance of isomeric sesquiterpenes with molecular weights of 204. The main components of the oil obtained by hydrodistillation were beta-caryophyllene, spathulenol, caryophyllene oxide, delta-cadinene, germacrene D, benzaldehyde and bicyclogermacrene. However, the oil obtained by steam distillation contained higher levels of sesquiterpene hydrocarbons, with predominance of P-caryophyllene (C), germacrene D (G) and bicyclogermacrene (B), and was considered to be more representative of the composition of the oil in its natural state. The intraspecific chemical variability of the essential oil obtained by steam distillation was evaluated within populations of trees growing at three separate locations in the state of São Paulo, Brazil. Three distinct chemical groups could be characterised due to differences in the relative percentages of the three main sesquiterpenes from essential oil: CGB [relative contents of C (14-34%), G (5-28%), B (8-15%)], BCG [B (17-34%), C (9-24%), G (12-25%)] and GCB [G (22-42%), C (4-17%), B (7-15%)]. Individuals from groups CGB and BCG were found to be more frequent at south locations while group GCB is predominant in north location. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this work, thermodynamic and economic analyses are applied to a Brazilian thermal power plant operating with natural gas. The analyses are performed in two cases: the current configuration and the future configuration. The current configuration is constituted by four gas turbines which operate in open cycle. The future configuration is obtained by a plant repowering by addition of four recovery boilers, two steam turbines and others equipment and accessories necessary to operate in combined cycle. In order to obtain the performance parameters, energetic and exergetic analyses for each case considered are carried out. on the other hand, thermoeconomic analysis provides means to evaluate the influences of the capital and fuel costs in the composition of the electricity costs. Techniques of investment analysis are also applied to the new configuration and from the results obtained it is possible to verify the advantages of the modifications.