78 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an approach to the nonvanishing boundary value problem for integrable hierarchies based on the dressing method. Then we apply the method to the AKNS hierarchy. The solutions are found by introducing appropriate vertex operators that takes into account the boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value , the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The space of labels characterizing the elements of Schwinger's basis for unitary quantum operators is endowed with a structure of symplectic type. This structure is embodied in a certain algebraic cocycle, whose main features are inherited by the symplectic form of classical phase space. In consequence, the label space may be taken as the quantum phase space: It plays, in the quantum case, the same role played by phase space in classical mechanics, some differences coming inevitably from its nonlinear character. © 1990 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a higher derivative gauge theory in (2 + 1) dimensions which can have its parameters suitably tuned in order to become a consistent quantum field theory, in the sense that both tachyons and ghosts are absent from the particle spectrum of the theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It was earlier shown that an SO(9,1) θα spinor variable can be constructed from RNS matter and ghost fields. θα has a bosonic world-sheet super-partner λα which plays the role of a twistor variable, satisfying λΓμ λ = ∂xμ + iθΓμ ∂θ. For Type IIA superstrings, the left-moving [θL α, λL α] and right-moving [θRα, λRα] can be combined into 32-component SO(10,1) spinors [θA, λA]. This suggests that λAΓAB 11 λB = 2λL αλRα can be interpreted as momentum in the eleventh direction. Evidence for this interpretation comes from the zero-momentum vertex operators of the Type IIA superstring and from consideration of DD-branes. As in the work of Bars, one finds an SO(10,2) structure for the Type IIA superstring and an SO(9, 1) × SO(2, 1) structure for the Type IIB superstring. © 1997 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the electric polarizability of a bound system in relativistic quantum theory, there are two definitions that have appeared in the literature. They differ depending on whether or not the vacuum background is included in the system. A recent confusion in this connection is clarified. © 1999 American Associations of Physics Teachers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study was developed in order to build a function M invariant in time, by means of Hamiltonian's formulation, taking into account the equation associated to the problem, showing that starting from this function the equation of motion of the system with the contour conditions for non-conservative considered problems can be obtained. The Hamiltonian method is extended for these kind of systems in order to validate for non-potential operators through variational approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.