371 resultados para Solution heat treatment
Resumo:
Cr-doped xerogels were obtained by sol-gel process from the acid-catalyzed and ultrasound-stimulated hydrolysis of tetraethoxysilane (TEOS) with addition of CrCl3.6H(2)O in water solution during the liquid step of the process. The gels were aged immersed in different pH solutions for about 30 days, after that they were allowed to dry. The samples were annealed at temperatures ranging from 40 to 600degreesC and analyzed by UV-visible absorption spectroscopy. Cr3+ is the preferable oxidation state of the chromium ion in the gels annealed up to 250-300degreesC, in the case of aging in solutions of pH=5 and 11. A high UV absorption below similar to320 nm, due to the host gel, and different absorption bands, depending on the temperature, due to the chromium ion were observed in the xerogels at temperatures below similar to250degreesC, in the case of aging in solutions of pH=1 and 2. These absorption bands have not been assigned. Above 300degreesC up to 600degreesC, Cr5+, and possibly Cr6+, are the preferable oxidation states of the chromium ion independent of the pH of the aging solution, so the xerogels turn to a yellowish appearance in all cases.
Resumo:
LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogenous junctions in Mn-doped SnO2 polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 degrees C for 2h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO2 center dot MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO2 varistors and ZnO based varistors. (C) 2008 WILEY-VCH Verlay GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ribonuclease production by Aspergillus flavipes. A sulphureus and A. fischeri in semisynthetic medium, after 24-144 hours at 30 degrees C under shaking, was studied. After cultivation, the medium was separated from micelia by filtration and the resultant solution was used as enzymatic extract. The highest amount of biomass and RNase was obtained after 96 hours of cultivation. The enzymes produced by three species presented similar characteristics, with optimum temperature at 55 degrees C and two peaks of activity at pH 4.5 and 7.0. A. flavipes RNases were more sensitive to temperature: 50% of the initial activity was lost after 1 hour at 70 degrees C. After this heat treatment, RNase of A. sulphureus lost 30% of this activity and that of A. fischeri only 16%. The nucleotides released by enzimatic hydrolysis of RNA were separated by ion exchange chromatography in a AG-1X8-formiate column and identified by paper chromatography. This procedure indicated that the raw enzymatic extract of Aspergillus flavipes is able to hydrolyze RNA, releasing 3'-nucleotides monophosphate at pH 4.5 and 3' and 5'-nucleotides monophosphate at pH 7.0 and 8.5. This result suggests that this strain produces two different types of RNase, one acidic and other alcaline, with different specificities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.
Resumo:
Oriented LiNbO3 thin films were prepared using a polymeric precursor solution deposited on (0001) sapphire substrate by spin coating and crystallized in a microwave oven. Crystallization of the films was carried out in a domestic microwave oven. The influence of this type of heat treatment on the film orientation was analyzed by X-ray diffraction and electron channeling patterns, which revealed epitaxial growth of films crystallized at 550 and 650 degreesC for 10 min. A microstructural study indicated that the films treated at temperatures below 600 degreesC were homogeneous and dense, and the optical properties confirmed the good quality of these films. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Monodisperse spheres of silica and latex were obtained by a surfactant free styrene polimerization and the Stober method respectively. Controlling settling either by centrifugation or by dip-coating colloidal crystals could be obtained. Silica inverse opals were prepared by using the latex colloidal crystals as templates and TEOS/ethanol solution. Eu3+ containing silica spheres were obtained dispersing silica spheres in Eu(NO3)(3) isopropanol solutions. Emission spectra suggest the formation of an amorphous Eu3+ containing phase well adhered at the spheres surface. The utilization of solutions of trifluoroacetates salts of Pb2+ and Eu3+ was observed to destroy the silica spherical pattern when samples are treated at 1000degreesC. In that case nanocrystals of PbF2 and amorphous silica were obtained after heat treatment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)