92 resultados para Solar energy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Photosynthesis is the single most important source of 02 and organic chemical energy necessary to support all non-autotrophic life forms. Plants compartmentalize this elaborate biochemical process within chloroplasts in order to safely harness the power of solar energy and convert it into usable chemical units. Stresses (biotic or abiotic) that challenge the integrity of the plant cell are likely to affect photosynthesis and alter chlorophyll fluorescence. A simple three-step assay was developed to test selected herbicides representative of the known herbicide mechanisms of action and a number of natural phytotoxins to determine their effect on photosynthesis as measured by chlorophyll fluorescence. The most active compounds were those interacting directly with photosynthesis (inhibitors of photosystem I and II), those inhibiting carotenoid synthesis, and those with mechanisms of action generating reactive oxygen species and lipid peroxidation (uncouplers and inhibitors of protoporphyrinogen oxidase). Other active compounds targeted lipids (very-long-chain fatty acid synthase and removal of cuticular waxes). Therefore, induced chlorophyll fluorescence is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity. Published by Elsevier B.V.
Resumo:
The current technological development made by the absorption refrigeration system is an economic and ambient alternative in comparison to the vapor cycle, possessing an advantage that uses thermal energy that is less noble. Chillers of absorption are used widely in the air conditioned industries, because they can be set in motion through hot water vapors that burn natural gas, solar energy, biomasses amongst others instead of electricity. These systems allow it to reduce the tips of electric demand and balance the rocking of energy demand. This work has had a main objective to simulate a absorption refrigeration cycle with lithium-water bromide solution using biogas of sanitary landfill, and mixtures of this with natural gas. These results shown to the energy viability of the system burning biogas and its mixtures with natural gas in the generator, when compared with equipments that uses traditional fuels (natural gas, oil diesel, amongst others), for operation the commercial chillers with 15 kW of the refrigeration capacity and temperature of the water in the entrance of 14°C and the exit of 7°C.
Resumo:
Electrical energy from photovoltaic panels (PV) has became an increasing viable alternative because of the great concern for environmental preservation and the possibility of the reduction of the conventional fuels, and this natural energy source is free, abundant and clean. In addition, Brazil is a privileged country because of the high levels of irradiation throughout its territory all over the year. Thus the exploitation of the energy from PV is one of the best alternatives to overcome the supply electrical energy issues. However, nowadays the energy conversion efficiency is low and the initial costs are high for these energy systems. Therefore, in order to increase the efficiency of these systems the extraction of the maximum power point (MPP) from PV is extremely necessary, and it is done using the maximum power point tracking (MPPT) techniques. The MPP of the PV varies non linearly with the environmental conditions and several MPPT techniques are available in literature, and this paper presents a careful comparison among the most usual techniques, doing meaningful comparisons with respect to the amount of energy extracted, PV voltage ripple, dynamic response and use of sensors, considering that the models are implemented via MatLab/Simulink®. © 2010 IEEE.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
The concept of entransy was recently proposed in terms of the analogy to the electric energy stored in a capacitor. The entransy of a system describes its heat transfer ability, as the exergy of a system quantifies its work production potential. Hence, the concept of entransy can be useful in problems where the heat transfer is the main objective, as for example, in systems collecting solar energy. This concept is quite recent and there are only a few works related to this topic. It is expected, however, that this approach will soon be used more often in the analysis of problems in thermodynamics and heat transfer. The objective of this work is to present a review of the concept of entransy in a systematic way, beginning with its definition, balance equations and a few examples of simple applications. It is hoped that this concept of entransy becomes a useful tool in the analysis and design of more efficient thermal systems. © 2012 Praise Worthy Prize S.r.l.- All rights reserved.
Resumo:
The global radiation incident on a tilted surfaces consists of components direct, diffuse and reflected from the ground. On a hourly database, the direct radiation can be calculated by geometric projections (ratio of the incidence angle to the solar zenith angle). The reflected radiation has a small effect on calculations and may be calculated with an isotropic model. Both components presents dependence of measures in incidence or horizontal surface. The great difficulty is to evaluate the diffuse radiation by variations of circumsolar, brightness horizontal, isotropic and anisotropic subcomponents. This study evaluated twenty models to estimate hourly diffuse radiation incident on tilted surfaces at 12.85° (latitude - 10°), 22.85° (latitude) and 32.85° (latitude + 10°) facing to North, under different cloudiness sky conditions, in Botucatu, São Paulo State, Brazil (22°53' S, 48°26' W and 786 m above the mean sea level). In contrast, models for estimating the diffuse component show major differences, which justify the validation for local calibrations. There is a decrease of the maximum total radiation scattered with increasing atmospheric transmissivity and inclination angle. The best results are obtained by anisotropic models: Ma and Iqbal, Hay, Reindl et al. and Willmott; isotropic: Badescu and Koronakis, and the Circumsolar model. The increase of the inclination angle allows for a reduction in the performance of statistical parametric models for estimating the hourly diffuse radiation.
Resumo:
Statistical equations were obtained and evaluated with annual, seasonal and monthly data groupings for estimates of direct and diffuse components of solar radiation based on the sunshine duration (ratio of sunshine and photoperiod) incident on horizontal and inclined surfaces to 12.85, 22.85 and 32.85° with facing to North, in Botucatu, SP. The ratios between the two components and radiation at the top of the atmosphere were used, in a database whose inclinations were measured in three different periods (22.85°: 04/1998 to 07/2001; 12.85°: 08/2011 to 02/2003; and 32.85°: 03/2003 to 12/2007) and concomitant with horizontal measures and sunshine duration. The correlations showed a linear and second degree polynomial behavior for the direct and diffuse radiation, with higher coefficients of determination in periods of low variation in the coverage of the sky (cloudiness). The highest values of the direct and diffuse radiation were found in winter and summer, respectively for all surfaces evaluated. The increase in the inclination angle decreased the performance of equations in all groups of data with increase in scattering and decrease in index of the adjustment, however, the monthly equations allowed better performance for the two components.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Avaliação do desempenho hidro-energético de sistemas fotovoltaicos utilizados no bombeamento de água
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC