81 resultados para Soil temperature
Microclima e características agronômicas em diferentes espaçamentos e populações na cultura do milho
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
No presente trabalho foram avaliados os elementos ambientais: temperatura do solo, temperatura e umidade relativa do ar, nas condições de ambiente protegido (coberto com polietileno) e de campo, num período sem cultura (solo sem cobertura vegetal) e num outro com a cultura do pimentão, em anos diferentes, nas condições climáticas de Botucatu, SP. O híbrido de pimentão utilizado foi o Margarita, que apresenta frutos vermelhos quando maduros. A temperatura do solo foi monitorada por dois sensores eletrônicos instalados a 0,1m de profundidade, sendo um na condição de ambiente protegido e outro na condição de campo, e a temperatura e umidade do ar foram monitoradas por dois sensores eletrônicos instalados a 2m de altura (ambiente protegido e campo). O efeito do pimentão alterando o microclima de cultivo foi observado na temperatura do solo, que apresentou menores valores do índice no período com a cultura, uma vez que o dossel funcionou como uma barreira física que impediu que a radiação solar chegasse ao solo. Os valores encontrados para o índice da temperatura e umidade relativa do ar no período sem a cultura foram muito próximos aos encontrados no período com a cultura, não caracterizando o efeito do pimentão sobre essas variáveis.
Resumo:
The soil is one of the main C pools in terrestrial ecosystem, capable of storing significant C amounts. Therefore, understanding the factors that contribute to the loss of CO2 from agricultural soils is critical to determine strategies reducing emissions of this gas and help mitigate the greenhouse effect. The purpose of this study was to investigate the effect of soil tillage and sugarcane trash on CO2 emissions, temperature and soil moisture during sugarcane (re)planting, over a study period of 15 days. The following managements were evaluated: no-tillage with crop residues left on the soil surface (NTR); without tillage and without residue (NTNR) and tillage with no residue (TNR). The average soil CO2 emission (FCO2) was lowest in NTR (2.16 µmol m-2 s-1), compared to the managements NTNR (2.90 µmol m-2 s-1) and TNR (3.22 µmol m-2 s-1), indicating that the higher moisture and lower soil temperature variations observed in NTR were responsible for this decrease. During the study period, the lowest daily average FCO2 was recorded in NTR (1.28 µmol m-2 s-1), and the highest in TNR (6.08 µmol m-2 s-1), after rainfall. A loss of soil CO2 was lowest from the management NTR (367 kg ha-1 of CO2-C) and differing significantly (p<0.05) from the managements NTNR (502 kg ha-1 of CO2-C) and TNR (535 kg ha-1 of CO2-C). Soil moisture was the variable that differed most managements and was positively correlated (r = 0.55, p<0.05) with the temporal variations of CO2 emission from NTR and TNR. In addition, the soil temperature differed (p<0.05) only in management NTR (24 °C) compared to NTNR (26 °C) and TNR (26.5 °C), suggesting that under the conditions of this study, sugarcane trash left on the surface induced an average rise in the of soil temperature of 2 ºC.
Resumo:
The aim of this study was to evaluate CO2 emission, canopy characteristics and herbage accumulation in pastures of pensacola bahiagrass under frequencies of defoliation. The experiment was conducted at the Universidade Estadual Paulista Julio de Mesquita Filho, Faculty of Agrarian Sciences and Veterinary of UNESP, Jaboticabal, São Paulo, Brasil. The experimental period was from May 3rd to July 26th 2012. The experimental area comprised 28 m² of pensacola bahiagrass (Paspalum notatum Flügge), divided into 10 plots for allocation of treatment (frequencies of defoliation = 2 or 4 weeks). The following variables were studied: canopy height, light interception, leaf area index, herbage accumulation, tiller density, CO2 emissions, soil temperature and moisture. The frequencies of defoliation in the months of May, June and July slightly affect pensacola bahiagrass characteristics. CO2, soil temperature and moisture are more associated to environmental conditions (months of evaluation) than to the frequencies of defoliation imposed to the canopies.
Resumo:
The adoption of management practices that reduce water losses is essential to conserve moisture and improve soil temperature, especially in arid and semiarid environments of the Brazilian Northeast, characterized by high evapotranspiration and the adoption of irrigation with saline water, which harms growth and yield of commercial crops. Given these factories, an experiment was conducted in Nova Floresta, Paraiba, from August 2010 to February 2011 in Oxisoil, in order to evaluate the production of bell pepper and soil moisture in grooves with side trim, and application of biofertilizer and mulch cattle. The experimental design was randomized blocks with four replications using a factorial 2 x 2 x 2 for the ground beef with and without biofertilizer, with and without residues of sisal fiber (Agave sisalana), with and without the side facing the grooves, to reduce lateral water losses by infiltration of water with polyethylene plastic film. From the results, the lining of the lateral grooves provided higher values of soil moisture, number of fruits, fruit mass, plant production and productivity, bell pepper plants. It was also found that the combination of biofertilizer and mulch the ground beef remained wetter in the first 15 cm depth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.
Resumo:
Planning is an essential instrument for the agricultural occupation of the lands, because it supports the activities of food production and raw materials. It must be driven by techniques that provide the sustainability of these activities, so that also ensures the environmental balance of agroecosystems. Lands misuse can be considered as one of the causes of frustration of agricultural activities. Thus, the occurrence of discrepancies between the effective use (real use) of the land and its agricultural aptitude can compete, in many cases, to the decrease of productivity, as well as for soil degradation. In this way, this research intends to study the relationship between the temporary cultivations, halfperennial cultures, perennial and its developmental environment, determining the edaphoclimatic characteristics of landscapes. From then on, a letter shall be subject to the use and occupation of the soil for agriculture in the municipality of Cristais Paulista-SP, aiming to describe the spatial organization of land use and vegetation cover, and emphasizing management and conservative practices. For that, climatic factors were characterized, fundamentally humidity, temperature and luminosity; edaphics, including parental material, chemical and physical properties, fertility, soil temperature and climatic zoning; biotic, referring to the suitability of different cultures or to be implanted; physical, such as geomorphology, slope, geology, hypsometry and hydrology; socioeconomic, in particular production and marketing seasons; and the way they all, together, affect the adaptation, distribution and production of crops. Using this information, the zoning of the area of study was done based on the 21 nominated groups obtained, in addition to recommendations and suggestions for handling each type of cultivation... (Complete abstract click electronic access below)