75 resultados para Sodium sulphate test
Resumo:
Purpose: To develop and characterize solid dispersions of praziquantel (PZQ) with sodium starch glycolate (SSG) for enhanced drug solubility. Methods: PZQ solid dispersion (SD) was prepared using co-precipitation method by solvent evaporation. The ratios of PZQ to SSG were 2:1, 1:1, 1:2, 1:3 (w/w). PZQ solubility was evaluated in purified water, and PZQ dissolution test was carried out in 0.1N HCl. Structural characterization of the dispersions was accomplished by x-ray diffraction (XRD) and infrared spectroscopy (FTIR) while the external morphology of the SDs, SSG and PZQ were studied by scanning electron microscopy (SEM). Mucoadhesion properties of the SD (1:3) and SSG, on mucin disks were examined using texture profile analysis. Results: The highest solubility was obtained with 1:3 solid dispersion, with PZQ solubility of 97.31 %, which is 3.65-fold greater than the solubility of pure PZQ and physical misture (PM, 1:3). XRD results indicate a reduction in PZQ crystallinity while infrared spectra showed that the functional groups of PZQ and SSG were preserved. SEM showed that the physical structure of PZQ was modified from crystalline to amorphous. The amount of PZQ in PM and SD (1:3) that dissolved in 60 min was 70 and 88 %, respectively, and these values increased to 76 and 96 %, respectively. The solid dispersion reduced the mucoadhesive property of the glycolate. Conclusion: Solid dispersion formulation using SSG is a good alternative approach for increasing the dissolution rate of PZQ. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.
Resumo:
Background: Activation of GABAB receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABAB receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used.Results: In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABAB antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate.Conclusions: Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure. © 2013 Kimura et al.; licensee BioMed Central Ltd.
Resumo:
This study evaluated the effect of different concentrations of sodium trimetaphosphate (TMP) with and without fluoride (F) on the concentration of calcium (Ca), phosphorus (P) and F in hydroxyapatite (HA). Synthetic HA powder (0.15 g) was suspended (n=6) in solutions (75 mL) of TMP at 0%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, 4.0%, 6.0%, 8.0% and 10% concentrations in the presence and absence of 100 ppm F and subjected to a pH-cycling process. The precipitates were filtrated, dried at 70° C for 24 h and ground onto a fine powder. The concentrations of F (KOH (CaF2) and HCl (FA) soluble), Ca (Arsenazo III), and P (molybdate method) in HA were determined. The Ca P, and Ca/P ratio data were subjected to Tukey's test and the F data were subjected to Student-Newman-Keuls test (p<0.05). The addition of TMP to the samples reduced F deposition to 98% (p<0.001). The groups containing 100 ppm F and 0.4% or 0.6% TMP exhibited a higher Ca concentration than the group containing only 100 ppm F (p<0.05). Furthermore, the HA treated with 0.2% and 0.4% TMP and 100 ppm F showed a higher Ca/P ratio than the other groups (p<0.001). In conclusion, TMP at 0.2%, 0.4% and 0.6% concentrations combined with F seemed to be able to precipitate HA with low solubility. However, especially at high concentrations, TMP interferes with F deposition on HA.
Resumo:
The objective of this study was to evaluate in vitro the effect of a low fluoride toothpaste (450 μgF/g, NaF) combined with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel remineralization. Bovine enamel blocks had the enamel surface polished sequentially to determine the surface hardness. After production of artificial carious lesions, the blocks selected by their surface hardness were submitted to remineralization pH cycling and daily treatment with dentifrice suspensions (diluted in deionized water or artificial saliva): placebo, 275, 450, 550 and 1,100 μgF/g and commercial dentifrice (positive control, 1,100 μgF/g). Finally, the surface and cross-section hardness was determined for calculating the change of surface hardness (%SH) and mineral content (%ΔZ). Fluoride in enamel was also determined. The data from %SH, %ΔZ and fluoride were subjected to two-way analysis of variance followed by Student-Newman-Keuls's test (p<0.05). The mineral gain (%SH and %ΔZ) was higher for toothpastes diluted in saliva (p<0.05), except for the 450 mgF/g dentifrice with Cacit/TMP (p>0.05). The 450 Cacit/ TMP toothpaste and the positive control showed similar results (p>0.05) when diluted in water. A dose-response was observed between fluoride concentration in toothpastes and fluoride present in enamel, regardless of dilution. It was concluded that it is possible to enhance the remineralization capacity of low F concentration toothpaste by of organic (Cacit) and inorganic (TMP) compounds with affinity to hydroxyapatite.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the current study was to evaluate the presence of debris and smear layer after endodontic irrigation with different formulations of 2% chlorhexidine gluconate (CHX) and its effects on the push-out bond strength of an epoxy-based sealer on the radicular dentin. One hundred extracted human canines were prepared to F5 instrument and irrigated with 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Fifty teeth were divided into five groups (n=10), according to the final irrigation protocol with different 2% CHX formulations: G1 (control, no final rinse irrigation), G2 (CHX solution), G3 (CHX gel), G4 (Concepsis), and G5 (CHX Plus). In sequence, the specimens were submitted to scanning electron microscopy (SEM) analysis, in the cervical-medium and medium-apical segments, to evaluate the presence of debris and smear layer. The other 50 teeth were treated equally to a SEM study, but with the root canals filled with an epoxy-based endodontic sealer and submitted to a push-out bond strength test, in the cervical, middle, and apical thirds. G2, G3, G4, and G5 provided higher precipitation of the debris and smear layer than G1 (P<0.05), but these groups were similar to each other (P>0.05), in both segments. The values obtained in the push out test did not differ between groups, independent of the radicular third (P>0.05). The CHXs formulations caused precipitation of the debris and smear layer on the radicular dentin, but these residues did not interfere in the push-out bond strength of the epoxy-based sealer. Microsc. Res. Tech. 77:17-22, 2014. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 10(7) CFU mL(-1) by spectrophotometry. This biomass was suspended in sodium alginate solution (3%) that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5) and different sucrose concentrations 15, 20, 25, 30 and 35% at 30 degrees C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1) and 48 (15.31 g L-1) hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1) and 96 (23.5 g L-1) hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4%) and 20% (59.4%) and to pH 5 was in 25 (68.85%) and 35% (64.64%). In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 10(9) CFU mL(-1) during fermentation time.