113 resultados para Simulation Systems Analysis
Resumo:
This paper investigates the major similarities and discrepancies among three important current decompositions proposed for the interpretation of unbalanced and/or non linear three-phase four-wire power circuits. The considered approaches were the so-called FBD Theory, the pq-Theory and the CPT. Although the methods are based on different concepts, the results obtained under ideal conditions (sinusoidal and balanced signals) are very similar. The main differences appear in the presence of unbalanced and non linear load conditions. It will be demonstrated and discussed how the choice of the voltage referential and the return conductor impedance can influence in the resulting current components, as well as, the way of interpreting a power circuit with return conductor. Under linear unbalanced conditions, both FBD and pq-Theory suggest that the some current components contain a third-order harmonic. Besides, neither pq-Theory nor FBD method are able to provide accurate information for reactive current under unbalanced and distorted conditions, what can be done by means of the CPT. © 2009 IEEE.
Resumo:
This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper aims to present, using a set of guidelines, how to apply the conservative distributed simulation paradigm (CMB protocol) to develop efficient applications. Using these guidelines, even a user with little experience on distributed simulation and computer architecture can have good performance on distributed simulations using conservative synchronization protocols for parallel processes.The set of guidelines is focus on a specific application domain, the performance evaluation of computer systems, considering models with coarse granularity and few logical processes and running over two platforms: parallel (high performance communication environment) and distributed (low performance communication environment).
Resumo:
The paper proposes a framework for the analysis and representation of external systems for online optimisation studies. The basis for this framework is the equivalent OPF (EOPF), an optimisation model obtained by partitioning of the OPF model. The EOPF is mathematically redefined in the paper to accommodate the concept of a buffer zone. The resulting model is more useful for online optimisation, since external information obtained through intercontrol-centre exchange contracts can be used to improve internal control calculation. Numerical results obtained with original studies involving the boundary-matching procedure have provided a conceptual basis for the definition of a buffer zone for optimisation studies with the EOPF. In the proposed framework, the accuracy of the external representation in optimisation studies is evaluated by comparing the controls obtained by an EOPF procedure with those obtained by the reference-optimisation procedure defined in this paper. The framework is then used to evaluate the accuracy of equivalent optimisation studies involving the IEEE 118-bus test system and the Brazilian South Southeast 810-bus system. The results show that the incorporation of a buffer zone improves the external system representation for all optimisation studies performed.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
Resumo:
This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to analyze dual-purpose systems focusing the total cost optimization; a superstructure is proposed to present cogeneration systems and desalination technologies alternatives for the synthesis process. The superstructure consists of excluding components, gas turbines or conventional steam generators with excluding alternatives of supplying fuel for each combustion system. Also, backpressure or condensing/extraction steam turbine for supplying process steam could be selected. Finally one desalination unit chosen between electrically-driven or steam-driven reverse osmosis. multi-effect and multistage flash should be included. The analysis herein performed is based on energy and mass conservation equations, as well as the technological limiting equation of equipment. The results for ten different commercial gas turbines revealed that electrically-driven reverse osmosis was always chosen together with both natural gas and gasified biomass gas turbines. (C) 2009 Elsevier B.V. All rights reserved.