52 resultados para Shell molding (Founding)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cashew Nut Shell Liquid (CNSL) can be considered as a versatile raw material with wide applications in the form of surface coatings, paints and varnishes, as well as the production of polymers. Within this context, the chemical constituents of CNSL (anarcadic acid, cardanol, 2-cardol and methylcardol) become promising in the development of new materials components. Once separated, CNSL can be used in the research and development of additives, surfactants, pharmaceuticals, pesticides, polymers, resins and others. Being a byproduct, CNSL used in the preparation of new materials is characterized as a truly technological innovation.
Resumo:
Richards' gland is known for the majority of Epiponini wasps, and despite few experimental evidences, the taxonomic distribution in swarm-founder species and the function of this gland remain rather unclear. This work presents a morphological description of Richards' gland in Protonectarina sylveirae. The gland is formed by a cluster of class 3 cells underneath the anterior margin of the fifth metasomal sternite, and a reservoir formed by the intersegmental membrane between the fourth and fifth metasomal sternites where the secretion can be stored. The secretory cells contain a branched end apparatus that carries the secretory products towards the duct cell. Externally, the cuticle of the sternite, where the duct cells penetrate, is characterized by modifications as scales with very numerous pores. The presence of Richards' gland according to the model proposed by Samacá et al. 2013 in Protonectarina corroborates the single origin of this gland in Epiponini. The occurrence of a Golgi apparatus and smooth endoplasmic reticulum suggests pheromone production.
Resumo:
Covalent “click” cycloaddition was used to functionalize silica substrates with pH-sensitive nanoparticles, thus producing uniform and highly luminescent analytical devices usable in both commercial fluorimeters and fluorescence microscopes. Quantitative and spatially-resolved extracellular pH measurements were successfully achieved on live cardiac fibroblasts with these novel ion-sensitive surfaces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)