64 resultados para Semiconducting polymers
Resumo:
Meglumine is an aminocarbohydrate able to form supramolecular adducts with organic acids. The recognition is based on hydrogen bonds and the structures resulting from the complexation have high solubility in water. This property has been exploited by the pharmaceutical industry in the improvement of existing drugs, and the successful example of this approach involves the poorly soluble non-steroidal anti-inflammatory drugs (NSAIDs). Investigation of the thermal behavior of adduct obtained from meglumine and the NSAID diclofenac revealed that a polymer-like material is formed from the self-assembly of diclofenac-meglumine adducts in the melt. This polymer showed a high molecular weight around 2.0×105kDa. The kinetic parameters for the thermal decomposition step of the polymer were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15 and 20°Cmin-1, the Eα and Bα terms could be determined, and consequently the pre-exponential factor, Aα, as well as the kinetic model, g(α). © 2012 Elsevier B.V.
Resumo:
Modelling polymers with side chains is always a challenge once the degrees of freedom are very high. In this study, we present a successful methodology to model poly[2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene] (MEH-PPV) and poly[3-hexylthiophene] (P3HT) in solutions, taking into account the influence of side chains on the polymer conformation. Molecular dynamics and semi-empirical quantum mechanical methods were used for structure optimisation and evaluation of optical properties. The methodology allows to describe structural and optical characteristics of the polymers in a satisfactory way, as well as to evaluate some usual simplifications adopted for modelling these systems. Effective conjugation lengths of 8-14.6 and 21 monomers were obtained for MEH-PPV and P3HT, respectively, in accordance with experimental findings. In addition, anti/syn conformations of these polymers could be predicted based on intrinsic interactions of the lateral branches. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Two different cationic polymers of the same chemical type and with very similar chemical structures were reacted with a natural bentonite over a wide range of polymer/clay ratios. This study involved the synthesis of cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene. Ionenes are ion-containing polymers that contain quaternary nitrogen atoms in the main macromolecular chain as opposed to a pendant chain. The CHN content, basal spacing, and elemental composition of each of the polymer-clay complexes were analyzed by X-ray diffraction, X-ray fluorescence, and thermogravimetry. All the polycations reacted to form interlayer complexes with clay, which displaced more Na+ and little Ca2+. Sodium and calcium were both present as interlayer cations in the clay and its complexes. The TG/DTG curves show that both polymers underwent thermal degradation in more than one stage. Specifically, 3,6-ionene was found to undergo two stages of decomposition and 3,6-dodecylionene undergo three stages. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174,85 kJ mol-1) complexes have greater thermal stability than 3,6-ionene (E = 115,52 kJ mol-1) complexes. The mechanism of degradation suggests a direct interaction with the dodecyl chain containing 12 carbons, which are present in 3,6-dodecylionene but not in 3,6-ionene. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1284-1293, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Novel brominated amorphous hydrogenated carbon (a-C:H:Br) films were produced by the plasma polymerization of acetylene-bromoform mixtures. The main parameter of interest was the degree of bromination, which depends on the partial pressure of bromoform in the plasma feed, expressed as a percentage of the total pressure, R-B. When bromoform is present in the feed, deposition rates of up to about 110 nm min(-1) may be obtained. The structure and composition of the films were characterized by Transmission Infrared Reflection Absorption Spectroscopy (IRRAS) and X-ray Photo-electron Spectroscopy (XPS). The latter revealed that films with atomic ratios Br:C of up to 0.58 may be produced. Surface contact angles, measured using goniometry, could be increased from similar to 63 degrees (for an unbrominated film) to similar to 90 degrees for R-B of 60 to 80%. Film surface roughness, measured using a profilometer, does not depend strongly on R-B. Optical properties the refractive index, n, absorption coefficient, alpha(E), where E is the photon energy, and the optical gap, E-g, were determined from film thicknesses and data obtained by Transmission Ultraviolet-Visible Near Infrared Spectroscopy (UVS). Control of n was possible via selection of R-B. The measured optical gap increases with increasing F-BC, the atomic ratio of Br to C in the film, and semi-empirical modeling accounts for this tendency. A typical hardness of the brominated films, determined via nano-indentation, was similar to 0.5 GPa. (C), 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
PurposeThe mechanical properties of acrylic resins used in intraoral prostheses may be altered by frequent exposure to liquids such as beverages and mouthwashes. This study aimed to evaluate the effect of thermocycling and liquid immersion on the hardness of four brands of acrylic resins commonly used in removable prostheses (Onda Cryl, QC-20, Classico, Lucitone).Materials and MethodsFor each brand of resin, seven specimens were immersed in each of six solutions (coffee, cola, red wine, Plax-Colgate, Listerine [LI], Oral B), and seven more were placed in artificial saliva (control). The hardness was tested using a microhardness tester before and after 5000 thermocycles and after 1, 3, 24, 48, and 96 hours of immersion. The results were analyzed using three-way repeated-measures ANOVA and Tukey's test (p < 0.05).ResultsThe hardness of the resins decreased following thermocycling and immersion in the solutions. Specimens immersed in cola and wine exhibited significant decreases in hardness after immersion for 96 hours, although the greatest significant decrease in hardness occurred in specimens immersed in LI. However, according to American Dental Association specification 12, the Knoop hardness of acrylic resins for intraoral prostheses should not be below 15. Thus, the median values of superficial hardness observed in most of the acrylic resins in this study are considered clinically acceptable.ConclusionsThe microhardness of polymers used for intraoral prostheses decreases following thermocycling. Among specimens immersed in beverages, those immersed in cola or wine experienced the greatest decrease in microhardness. Immersion of acrylic resins in LI significantly decreased the microhardness in relation to the initial value. Among the resins assessed, QC-20 exhibited the lowest initial hardness.
Resumo:
The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.
Resumo:
A new selective sensor based on molecularly imprinted polymers (MIPs) was developed for the determination of hexazinone (HXZ) in environmental samples. MIPs were synthesized using a non-covalent approach, and selection of the monomers employed in the polymerization reaction was carried out by molecular modeling. Three functional monomers with high (2-vinylpyridine (MP17)) and intermediate (methacrylic acid (MP12) and acrylamide (MP5)) energies of binding to the template (HXZ) were selected for preparation of the MIPs, in order to conduct comparative studies and validate the theoretical data. For sensor construction, carbon pastes were modified with each MIP or NIP (non-imprinted polymer), and HXZ determination was performed using differential pulse adsorptive cathodic stripping voltammetry (DPAdCSV). All parameters affecting the sensor response were optimized. In HCl at pH 2.5, the sensor prepared with MP17 (5% w/w in the paste) showed a dynamic linear range between 1.9 × 10−11 and 1.1 × 10−10 mol L−1, and a detection limit of 2.6 × 10−12 mol L−1, under the following conditions: accumulation time of 200 s at a potential of −0.5V, scan rate of 50 mVs−1, pulse amplitude of 60 mV, and pulse width of 50 ms. The sensor was selective in the presence of other similar compounds, and was successfully applied to the analysis of HXZ in river water samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)