61 resultados para Schistosomiasis haematobia
Resumo:
The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.
Resumo:
Currently, schistosomiasis mansoni is treated clinically with praziquantel (PZQ). Nevertheless, cases of tolerance and resistance to this drug have been reported, creating the need to develop new drugs or to improve existing drugs. Considering the small number of new drugs against Schistosoma mansoni, the design of nanotechnology-based drug delivery systems is an important strategy in combating this disease. The aim of this study was to evaluate the activity of PZQ containing liposome (lip.PZQ) on S. mansoni, BH strain. Mice were treated orally with different concentrations of PZQ and lip.PZQ 30 and 45 days following infection. The number of worms, recovered by perfusion of the hepatic portal system, and the number of eggs found in the intestine and liver were analysed. Parasite egg counts were also performed. The most active formulation for all parameters was 300. mg/kg of lip.PZQ, since as it decreased the total number of worms by 68.8%, the number of eggs in the intestine by 79%, and the number of hepatic granulomas by 98.4% compared to untreated controls. In addition, this concentration decreased egg counts by 55.5%. The improved efficacy of the treatment with lip.PZQ, especially when administered 45 days following infection, compared with the positive-control group (untreated) and the groups that received free PZQ, can be explained by greater bioavailability in the host organism; the preferred target of lip.PZQ is the liver, and lip.PZQ is better absorbed by the tegument of S. mansoni, which has an affinity for phospholipids. © 2013 Elsevier B.V.
Resumo:
The resistance to infestations by ectoparasites and infections by gastrointestinal nematodes was studied in 45 animals (males and females) of two genetic groups: purebred Nelore (NI, n=28) and Three-Cross (1/2 Angus+1/4 Canchim+1/4 Nelore - TC, n=17). The animals were monitored for 24months, during which they were left to graze in tropical pastures without receiving treatment for parasites. Each month the animals were examined for infestations by external parasites, to count the numbers of cattle ticks Rhipicephalus microplus with diameter greater than 4.5mm present on the left side, horn flies (Haematobia irritans) present in the lumbar region and botfly larvae (Dermatobia hominis) present on the entire body. The H. irritans counts were performed with the aid of digital photographs. At the time of examination, fecal samples were collected to count the eggs per gram (EPG) and to perform coprocultures, and peripheral blood samples were drawn to determine the packed cell volume (PCV) and to count the eosinophils. For statistical analysis, the count data were transformed into log10 (n+1), where n is the number of parasites. For PCV, significant effects (P<0.05) were found for collection month (CO), genetic group (GG) and gender (SX), with means and respective standard errors of 41.5±0.65% for the NI animals, 39.3±0.83% for the TC, 41.5±0.72% for the females and 39.3±0.77% for the males. Regarding the eosinophil counts, only the effect of sex was significant (P<0.01), with means and respective standard errors of 926.0±46.2/μL, for males and 1088.0±43.8/μL of blood, for females. The NI animals presented lower mean counts for all the external parasites compared to the TC animals (P<0.01). For ticks, the transformed means followed by standard errors for the NI and TC animals were 0.06±0.01 and 0.34±0.02, while for horn flies these were 0.92±0.05 and 1.36±0.06 and for botfly larvae they were 0.05±0.03 and 0.45±0.05, respectively. The average EPG values were only influenced by CO (P<0.01). The coprocultures revealed the presence of the following endoparasites: Haemonchus spp., Cooperia spp., Oesophagostomum spp. and Trichostrongylus spp., the last in smaller proportion. There were no significant differences between the genetic groups for the endoparasite loads, except for Cooperia spp., which were present in greater number (P<0.05) in the NI group. The results obtained in this experiment confirm previous findings of greater susceptibility of the Nelore breed to Cooperia spp. and high resistance to ectoparasites. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Nanotecnologia Farmacêutica - FCFAR