102 resultados para S. epidermidis
Resumo:
The presence of Staphylococcus aureus in the nasal cavities and pericatheter skin of peritoneal dialysis patients put them at high risk of developing peritonitis. However, it is not clear whether the presence of coagulase-negative staphylococci (CNS) in the nasal passages and skin of patients is related to subsequent occurrence of peritoneal infection. The aim of the present study was to verify the relationship between endogenous sources of S. aureus and CNS and occurrence of peritonitis in patients undergoing peritoneal dialysis. Thirty-two patients on peritoneal hemodialysis were observed for 18 months. Staphylococcus species present in their nasal passage, pericatheter skin and peritoneal effluent were identified and compared based on drug susceptibility tests and dendrograms, which were drawn to better visualize the similarity among strains from extraperitoneal sites as well as their involvement in the causes of infection. Out of 288 Staphylococcus strains isolated, 155 (53.8%) were detected in the nasal cavity, 122 (42.4%) on the skin, and 11 (3.8%) in the peritoneal effluent of patients who developed peritonitis during the study. The most frequent Staphylococcus species were CNS (78.1%), compared with S. aureus (21.9%). Among CNS, S. epidermidis was predominant (64.4%), followed by S. warneri (15.1%), S. haemolyticus (10.7%), and other species (9.8%). Seven (64%) out of 11 cases of peritonitis analyzed presented similar strains. The same strain was isolated from different sites in two (66%) out of three S. aureus infection cases. In the six cases of S. epidermidis peritonitis, the species that caused infection was also found in the normal flora. From these, two cases (33%) presented highly similar strains and in three cases (50%), it was difficult to group strains as to similarity. Patients colonized with multidrug-resistant S. epidermidis strains were more predisposed to infection. Results demonstrated that an endogenous source of S. epidermidis could cause peritonitis in peritoneal dialysis patients, similarly to what has been observed with S. aureus.
Resumo:
The aim of this study was to evaluate the antimicrobial activity of different trademarks and compositions of gutta-percha points and calcium hydroxide pastes used in endodontic therapy. The evaluated material consisted of gutta-percha points containing calcium hydroxide (Roeko™), gutta-percha points containing chlorhexidine (Roeko™), two convencional gutta-percha points (Endo Points™ and Roeko™) and two calcium hydroxide pastes (Calen™ and Calen/PMCC™). Antimicrobial tests included five species of microorganisms: Escherichia coli (ATCC10538), Staphylococcus epidermidis (ATCC12228), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), and Micrococcus luteus (ATCC9341). The Agar difusion method was employed. The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37°C for 24 h. The triphenyltetrazolium chloride gel was added for optimization and the zones of inhibition were measured. Statistical evaluation was carried out using analysis of variance and Tukey Test. The obtained results showed that all microbial species used in the study were inhibited by the gutta-percha points containing chlorhexidine and by the calcium hydroxide pastes (Calen™ and Calen/ PMCC™), with similar results (p > 0.05). No antimicrobial activity was observed for the other groups. It was concluded that the gutta-percha points containing chlorhexidine presented antimicrobial activity, whereas the gutta-percha points containing calcium hydroxide did not.
Resumo:
Water from dental equipment presents risks for surgeon-dentists as well as for patients because it might work as a means of dissemination/ transmission of microoganisms. The objective of this study was to verify the quality of the water used in dental equipment by means of microbiological analysis, accomplishing the count of Staphylococcus spp.There have been collected, 160 samples of water from reserviors, taps used for hand washing, air-water syringes, and high-speed handpieces, in 40 dental offices in the city of Barretos, São Paulo. The rules concerning bacteriotogicaI analysis in cfu/mL from Standard Methods for the Examination of Water and Wastewater have been followed. The analysis of the results has made it possible to verify that out of the total of samples, 28% did not meet the standards of potability established by the American Dental Association: Regarding the origin of analyzed S. aureus., the most contaminated sites were high-speed handpicces in private offices (761%) and in, ental care plan offices (71%), followed by air-water syringe in dental care plan offices (64%). For S. epidermitis samples, the most contaminated sites were high-speed handpieces in SUS (Brazilian Government Health System) dental offices (22%) and in dental care plan offices (14%) The most contaminated sites were dental offices that saw Patients under dental care plans, Concerning tested antibiotics, the ones that presented better results as to sensibility to strain S. epidermidis were vancomycin and ciprofloxacin (100%) and, as to sensibility to strain S. aureus, it was ciprofloxacin (97%).
Resumo:
The detection of staphylococcal enterotoxins is decisive for the confirmation of an outbreak and for the determination of the enterotoxigenicity of strains. Since the recognition of their antigenicity, a large number of serological methods for the detection of enterotoxins in food and culture media have been proposed. Since immunological methods require detectable amounts of toxin, molecular biology techniques represent important tools in the microbiology laboratory. In the present study, polymerase chain reaction (PCR) was used to identify genes responsible for the production of enterotoxins and toxic shock syndrome toxin 1 (TSST-1) in S. aureus and coagulase-negative staphylococci (CNS) isolated from patients and the results were compared with those obtained by the reverse passive latex agglutination (RPLA) assay. PCR detection of toxin genes revealed a higher percentage of toxigenic S. aureus strains (46.7%) than the RPLA method (38.3%). Analysis of the toxigenic profile of CNS strains showed that 26.7% of the isolates produced some type of toxin, and one or more toxin-specific genes were detected in 40% of the isolates. These results suggests the need for further studies in order to better characterize the pathogenic potential of CNS and indicate that attention should be paid to the toxigenic capacity of this group of microorganisms.
Resumo:
Slime production is an important virulence factor of coagulase-negative Staphylococcus spp., allowing them to attach to smooth surfaces of biomaterials, and it has been associated with infections of implanted medical devices. In the present study the production of slime capsules in 27 strains of coagulase-negative Staphylococcus was investigated by culture in Congo Red agar (77.7% positivity), spectrophotometric or microplate method (81.4% positivity) and scanning electron microscopy (88.9% positivity). The resistance of coagulase-negative strains of Staphylococcus to various antimicrobial agents was also determined by agar disk diffusion. The proportion of strains resistant to penicillin G, oxacillin, erythromycin, clindamycin and gentamicin among the slime-producing staphylococci was 88.9%, 70.4%, 81.5%, 66.7% and 59.2%, respectively; all of the coagulase-negative staphylococci were susceptible to vancomycin. The strains isolated from central venous catheters were identified by a conventional method and the API Staph system. The 27 coagulase-negative Staphylococcus strains were identified as: S. saprophyticus (3.7%), S. xylosus (7.4%), S. haemolyticus (14.8%), S. epidermidis (37.0%), S. warneri (14.8%), S. lugdunensis (7.4%), S. hominis (7.4%), S. schleiferi (3.7%) and S. chromogenes (3.7%). It can be concluded that in the most of the coagulase-negative Staphylococcus species there was an association between slime production, the nosocomial origin of the strains and reduced sensitivity to the antibiotics, suggesting a pathogenic potential in the hospital environment.
Resumo:
Objectives: To compare the oral prevalence and antimicrobial susceptibility of Candida spp., staphylococci, enterobacteriaceae, and pseudomonas spp.from ankylosing spondylitis (AS) patients receiving conventional and anti-TNF-α therapy. Methods: The study included 70 AS patients, diagnosed according to the modified New York criteria (1984). The volunteers were divided into 2 groups: a biological group (AS BioG) (n=35) (on anti-TNF-α therapy) and a conventional group (AS ConvG) (n=35). The control group (ContG) (n=70) was made up of healthy individuals matched for age, gender, and oral conditions. After clinical examination, oral rinse samples were collected and plated in specific culture media. The number of colony-forming units per milliliter (cfu/ml) was obtained, and isolates were identified using the API system. Antimicrobial susceptibility tests were performed according to the NCCLS guidelines. Prevalence and counts of microorganisms were statistically compared between the 3 groups, using the Mann-Whitney and Chi-square tests. Significance level was set at 5%. Results: In both the AS BioG and the AS ConvG, staphylococci counts were higher than that in the ContG (p<0.0001). Candida albicans and staphylococcus epidermidis were the most commonly found species in all the groups. Serratia marcescens and klebsiella oxytoca were more prevalent in the AS BioG and the AS ConvG, respectively. Two Candida isolates (2.8%) from the AS BioG and 5 (10.8%) from the AS ConvG were resistant to amphotericin B and 5-fluorocytosine. A low percentage of staphylococci isolates was resistant to amoxicillin, ciprofloxacin, and doxycycline. Conclusion: Higher counts of staphylococci were observed in both AS groups, regardless of the current therapy, age, sex, and oral conditions. Anti-TNF-α therapy could not be correlated with increased counts of microorganisms. © Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2012.
Resumo:
The objective of this study was to isolate and identify the main staphylococcal species causing bovine mastitis in 10 Brazilian dairy herds and study their capability to produce enterotoxins. Herds were selected based on size and use of milking technology, and farms were visited once during the study. All mammary glands of all lactating cows were screened using the California Mastitis Test (CMT) and a strip cup. A single aseptic milk sample (20. mL) was collected from all CMT-positive quarters. Identification of Staphylococcus spp. was performed using conventional microbiology, and PCR was used to determine the presence of enterotoxin-encoding genes (sea, seb, sec, and sed). Of the 1,318 CMT-positive milk samples, Staphylococcus spp. were isolated from 263 (19.9%). Of these isolates, 135 (51%) were coagulase-positive staphylococci (CPS) and 128 (49%) were coagulase-negative staphylococci (CNS). Eighteen different species of CNS were isolated, among which S. warneri, S. epidermidis and S. hyicus were the most frequent. The distribution of Staphylococcus species was different among herds: S. epidermidis was found in 8 herds, S. warneri was found in 7 herds, and S. hyicus in 6 herds. Some of the CNS species (S. saprophyticus ssp. saprophyticus, S. auricularis, S. capitis, and S. chromogenes) were isolated in only one of the farms. Genes related to production of enterotoxins were found in 66% (n = 85) of all CNS and in 35% of the CPS isolates. For both CNS and CPS isolates, the most frequently identified enterotoxin genes were sea, seb, and sec; the prevalence of sea differed between CPS (9.5%) and CNS (35.1%) isolates. Staphylococcus warneri isolates showed a greater percentage of sea than seb, sec, or sed, whereas S. hyicus isolates showed a greater percentage of sea than sec. Over 60% of CNS belonged to 3 major species, which carried 62.2 to 81.3% of the enterotoxin genes. The high prevalence highlights the potential for food poisoning caused by these species. For possible high-risk situations for food poisoning, such as milk produced with total bacterial counts greater than regulatory levels and stored under inappropriate temperatures, monitoring contamination with CNS could be important to protect human health. Because the prevalence of CNS intramammary infections in dairy herds is usually high, and these species can be found in great numbers in bulk milk, identification of risk factors for production of staphylococcal enterotoxins should be considered in future studies. © 2013 American Dairy Science Association.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Introduction: The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere and to live on artificial surfaces and to resist to the host immune factors and antibiotics. Staphylococcal infections have become increasingly difficult to treat due their antibiotic resistance. Therefore, there is a continuous need for new and effective treatment alternatives against staphylococcal infections. The main goal of this study was to test N-acetylcysteine (NAC) and vancomycin alone and in combination against S. epidermidis and S. aureus biofilms. Methods: Biofilms were treated with NAC at minimum inhibitory concentration (MIC) and 10 × MIC concentrations and vancomycin at MIC and peak serum concentrations. Results: The use of NAC 10 × MIC alone showed a significant antibactericidal effect, promoting a 4-5 log10 CFU/ mL reduction in biofilm cells. The combination of NAC 10 × MIC with vancomycin (independently of the concentration used) reduced significantly the number of biofilm cells for all strains evaluated (5-6 log10). Conclusion: N-acetylcysteine associated to vancomycin can be a potential therapeutic strategy in the treatment of infections associated to biofilms of S. epidermidis or S. aureus.
Resumo:
The aim of this study was to isolate, quantify, identify, and compare opportunistic microorganisms (Candida and Staphylococcus genera and Enterobacteriaceae/Pseudomonadaceae families) from prosthesis-fitting surfaces, the hard palate, and mouth rinses of individuals wearing removable maxillary prosthesis with (50) and without (50) lesions of denture stomatitis (DS). The strains were collected and identified using phenotypic, biochemical and molecular tests. The counts of microorganisms were significantly higher in the group of individuals with DS (P < 0.05). C. albicans was the most frequently isolated yeast species in both groups, following by C. tropicalis and C. glabrata. Six isolates were identified as C. dubliniensis. S. aureus and S. epidermidis were the most frequent Staphylococcus species in both groups. Klebsiella pneumoniae was the predominant species in both groups. The association between Candida spp. and bacteria isolated in this study with DS suggests that these microorganisms may play important roles in the establishment and persistence of this disease. © 2013 Elsevier Inc.
Resumo:
Background: With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7).Methods: Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA.Results: In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg/mL) when compared to control (41.96 pg/mL).Conclusions: All plant extracts were effective against the microorganisms tested. The G. glabra L. extract exhibited least cytotoxicity and the E. arvense L. extract was the most cytotoxic. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Resumo:
The human skin not only provides passive protection as a physical barrier against external injury, but also mediates active surveillance via epidermal cell surface receptors that recognize and respond to potential invaders. Primary keratinocytes and immortalized cell lines, the commonly used sources to investigate immune responses of cutaneous epithelium are often difficult to obtain and/or potentially exhibit changes in cellular genetic make-up. Here we investigated the possibility of using salivary epithelial cells (SEC) to evaluate the host response to cutaneous microbes. Elevated secretion of IFN-γ and IL-12 was observed in the SEC stimulated with Staphylococcus aureus, a transient pathogen of the skin, as mono species biofilm as compared to SEC stimulated with a commensal microbe, the Staphylococcus epidermidis. Co-culture of the SEC with both microbes as dual species biofilm elicited maximum cytokine response. Stimulation with S. aureus alone but not with S. epidermidis alone induced maximum toll-like receptor-2 (TLR-2) expression in the SEC. Exposure to dual species biofilm induced a sustained upregulation of TLR-2 in the SEC for up to an hour. The data support novel application of the SEC as efficient biospecimen that may be used to investigate personalized response to cutaneous microflora. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)