143 resultados para Relativity
Resumo:
In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. on the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.
Resumo:
By using a nonholonomic moving frame version of the general covariance principle, an active version of the equivalence principle, an analysis of the gravitational coupling prescription of teleparallel gravity is made. It is shown that the coupling prescription determined by this principle is always equivalent with the corresponding prescription of general relativity, even in the presence of fermions. An application to the case of a Dirac spinor is made.
Resumo:
By using a nonholonomous-frame formulation of the general covariance principle, seen as an active version of the strong equivalence principle, an analysis of the gravitational coupling prescription in the presence of curvature and torsion is made. The Coupling prescription implied by this principle is found to be always equivalent to that of general relativity, a result that reinforces the completeness of this theory, as well as the teleparallel point of view according to which torsion does not represent additional degrees of freedom for gravity, but simply an alternative way of representing the gravitational field.
Resumo:
A detailed examination of the Killing equations in Robertson-Walker coordinates shows how the addition of matter and/or radiation to a de Sitter Universe breaks the symmetry generated by four of its Killing fields. The product U = a(2) H of the squared scale parameter by the time-derivative of the Hubble function encapsulates the relationship between the two cases: the symmetry is maximal when U is a constant, and reduces to the six-parameter symmetry of a generic Friedmann-Robertson-Walker model when it is not. As the fields physical interpretation is not clear in these coordinates, comparison is made with the Killing fields in static coordinates, whose interpretation is made clearer by their direct relationship to the Poincare group generators via Wigner-Inonu contractions.
Resumo:
In the framework of the spacetime with torsion, we obtain the flavor evolution equation of the mass neutrino oscillation in vacuum. A comparison with the result of general relativity case shows that the flavor evolutionary equations in Riemann spacetime and Weitzenbock spacetimes are equivalent in the spherical symmetric Schwarzschild spacetime, but turn out to be different in the case of the axial symmetry.
Resumo:
In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak-field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus responsible for the Lense-Thirring effect.
Resumo:
We clarify and develop the results of a previous paper on the birth of a closed universe of negative spatial curvature and multiply connected topology. In particular we discuss the initial instanton and the second topology change in more detail, This is followed by a short discussion of the results.
Resumo:
According to general relativity, the interaction of a matter field with gravitation requires the simultaneous introduction of a tetrad field, which is a field related to translations, and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz group. These two fields, however, are not independent. By analyzing the constraint between them, it is concluded that the relevant local symmetry group behind general relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal coupling prescription obtained from the Lorentz covariant derivative coincides exactly with the usual coupling prescription of general relativity. Instead of the tetrad, therefore, the spin connection is to be considered as the fundamental field representing gravitation.
Resumo:
Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.
Resumo:
A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenbock connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.
Resumo:
The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity.