55 resultados para REPRODUCING KERNEL HILBERT SPACES
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Pós-graduação em Linguística e Língua Portuguesa - FCLAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.
Resumo:
An extended Weyl-Wigner transformation which maps operators onto periodic discrete quantum phase space representatives is discussed in which a mod N invariance is explicitly implemented. The relevance of this invariance for the mapped expression of products of operators is discussed. © 1992.
Resumo:
In this paper I discuss Husserl's solution of the problem of imaginary elements in mathematics as presented in the drafts for two lectures he gave in Göttingen in 1901 and other related texts of the same period, a problem that had occupied Husserl since the beginning of 1890, when he was planning a never published sequel to Philosophie der Arithmetik (1891). In order to solve the problem of imaginary entities Husserl introduced, independently of Hilbert, two notions of completeness (definiteness in Husserl's terminology) for a formal axiomatic system. I present and discuss these notions here, establishing also parallels between Husserl's and Hilbert's notions of completeness. © 2000 Kluwer Academic Publishers.