235 resultados para REINFORCED COMPOSITES
Resumo:
Brazil is the only country in South America to have an automotive supplier sector based on natural fibers. New opportunities are arising due to an increase demand by the car makers in applying natural fibers in their parts. Several crop fibers have been developed in Brazil. Among them can be listed caroa, piacava, pupunha, mutum and others of regional application. For the automotive industry, which requires large quantities with uniform quality, the alternatives are sisal (170,000 ton/yr), curaua (150 ton/yr in 2003), malva, 200 ton/yr; Brazil is the single largest producer country of sisal, and commercially, the only one in curaua. For South America, the alternatives are fique in Colombia, abaca in equator, flax in Argentina and curaua in Venezuela. It must be understood by the target countries of drugs, is that crop fiber can be an economic alternative to coca in the Andes region, therefore an instrument of land reform and drug reduction plantations. Several companies have a strong program of apply natural fibers based components in their products: Volkswagen do Brazil, DaimlerChrysler, General Motors do Brazil. Among their suppliers can be listed companies such Pematec (curaua), Toro (sisal, coir and jute), Incomer (sisal and jute), Ober (jute, curaua), Indaru (jute and sisal), Antolin (imported kenaf,) Tapetes Sao Carlos (sisal), Poematec (coir) and Art-Gore, with Woodstock'' wood and natural fibers). Figures about production and demand are discussed in the paper.
Resumo:
Composites with antimicrobial activity are of great interest nowadays and the development of titanium dioxide with these functional properties presents interest in academic and industrial sectors.An approach to develop PE composite containing silver microparticles to have an antimicrobial effect is presented. To obtain such antimicrobial composites, LDPE/EVA were processed with Ag particles on TiO2 particles as inorganic carrier substance. Titanium dioxide nanoparticles (P-25) were covered with silver particles using Turkevich Method or citrate reduction method. The Ag/TiO2 particles were dispersed at concentration of 0,8 wt% and 1% wt% in LDPE/ethylene vinyl acetate copolymer (EVA)-(50% w/w) at the melt state in a Haake torque Rheometer. Silver microparticles were characterized with UV-Vis Spectroscopy. The composites thus prepared were characterized through XRD, Ares Rheometer, Scanning Electronic Microscopy (SEM) and JIS Z 2801 antimicrobial tests to study the effects of the addition of particles on rheological properties, morphological behavior and antimicrobial properties. The results showed that incorporation of silver/titanium dioxide particles on composites obtained systems with differents dispersions. The Ag/TiO2 particles showed uniform distribution of Ag on TiO2 particles as observed by SEM-EDX and antimicrobial tests according to JIS Z 2801 shows excellent antimicrobial properties.
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
Nanocellulose is the crystalline domains obtained from renewable cellulosic sources, used to increase mechanical properties and biodegrability in polymer composites. This work has been to study how high pressure defibrillation and chemical purification affect the PALF fibre morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of PALF fibers. The produced nanofibers were bundles of cellulose fibers of widths ranging between 5 and 15 nm and estimated lengths of several micrometers. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. The nanocomposites were prepared by means of compression moulding, by stacking the nanocellulose fibre mats between polyurethane films. The results showed that the nanofibrils reinforced the polyurethane efficiently. The addition of 5 wt% of cellulose nanofibrils to PU increased the strength nearly 300% and the stiffness by 2600%. The developed composites were utilized to fabricate various versatile medical implants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The contribution of new materials, involving composites and blends, has been reaching the most varied fields of science, as much of the scientific as technological point of view. This is due to the man's needs in applications, especially in medicine areas. Thus, this work shows the preparation and characterization of poly(vinylidene fluoride) (PVDF) and calcium carbonate (CaCO3) Composite films in order to analyse the incorporation of CaCO3 in PVDF for future application in bony restoration and bony filling. The films were prepared by casting method, where the PVDF pellet shape was dissolved in dimethylacetamide (DMA) and in a separate container CaCO3/DMA emulsion was also made. Soon afterwards they were mixed in several proportions 100/00, 95/05, 85/15, 70/30 in weight and left to dry in greenhouse. Homogeneous and flexible films were obtained and structurally characterized by attenuated total reflection infrared spectroscopy (FT-IR/ATR), thermal analyses (DSC, TGA), X-ray diffractometry, optical and scanning electron microscopies. The results showed that the material was a composite with good thermal stability until around 400 degrees C, the crystallinity of PVDF was non-polar alpha-phase and the obtained films were porous, being these filled with CaCO3. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.
Resumo:
The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite's life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite's degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites ( laminates [0/0](s) and [0/90](s)) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G(12)) have been determinated by using the Iosipescu test. Results for laminates [0/0](s) and [0/90](s), after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0](s) and [0/90](s), respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0](s) and [0/90](s).
Resumo:
Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The continuous use of structural polymer composites in aeronautical industry has required the development of repairing techniques of damages found in different types of laminates. The most usually adopted procedure to investigate the repair of composite laminates has been by repairing damages simulated in laminated composite specimens. This work shows the influence of structural repair technique on mechanical properties of a typical carbon fiber/epoxy laminate used in aerospace industry. When analyzed by tensile test, the laminates with and without repair present tensile strength values of 670 and 892 MPa, respectively, and tensile modulus of 53.0 and 67.2 GPa, respectively. By this result, it is possible to observe a decrease of the measured mechanical properties of the repaired composites. When submitted to fatigue test, it is observed that in loads higher than 250 MPa, this laminate presents a low life cycle (lower than 400,000 cycles). The fatigue performance of both laminates is comparable, but the non-repaired laminate presented higher tensile and fatigue resistance when compared with the repaired laminate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)