170 resultados para Pygidial gland secretions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.
Resumo:
This study describes the changes undergone by cells of the salivary glands of unfed and feeding (at day two and four post-attachment) Rhipicephalus sanguineus males, as well as new cell types. In unfed males, types I and II acini are observed with cells undifferentiated, undefined 1 and 2 (the latter, with atypical granules), a, c1 and c3; type III is composed of cells d and e; and type IV present cells g. In males at day two post-attachment, type I acini exhibit the same morphology of unfed individuals. An increase in size is observed in types II, III, and IV, as cells are filled with secretion granules. Some granules are still undergoing maturation. In type II acinus, cells a, b and c1-c8 are observed. Cells c7 and c8 are described for the first time. Cells c7 are termed as such due to the addition of polysaccharides in the composition of the secretion granules (in unfed individuals, they are termed undefined 1). Type III acini exhibit cells d and e completely filled with granules, and in type IV, cells g contain granules in several stages of maturation. In males at day four post-attachment, type I acini do not exhibit changes. Granular acini exhibit cells with fewer secretion granules, which are already mature. In type II acini, cells a, b, c1-c5 are present, type III exhibit cells d and e, and type IV contain cells g with little or no secretion. This study shows that in the salivary glands of R. sanguineus males, cells a, c1, and c3 of type II acinus, and cells d and e of type III do not exhibit changes in granular content, remaining continuously active during the entire feeding period. This indicates that during the intervals among feeding stages, gland cells reacquire the same characteristics found in unfed individuals, suggesting that they undergo reprogramming to be active in the next cycle.
Resumo:
In general, the exocrine glands of social insects are structures involved in the chemical communication associated with social life. Here, we report the discovery of an unknown tegumental gland that is present in the female imagoes of Cornitermes cumulans and occurs next to the well-developed tergal glands that have previously been described. The tegumental glands release their secretion in the intersegmental membrane and are composed of bicellular units, a secretory cell and a canal cell, that are closely located to the epidermal cells in the inferior part of the eighth and ninth tergites. The ultrastructure of the glandular cells showed abundant smooth endoplasmic reticulum, suggesting that the secretion may be pheromonal, although its function is still unknown. These exocrine structures are facing the tergal glands, and we hypothesized that they act synergistically with the tergal glands to generate short-range attraction during tandem behavior. Microsc. Res. Tech. 73: 1005-1008, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dufour glands of Apis mellifera and Melipona bicolor were studied under light and transmission electron microscopy, using the cytochemical techniques of mercury bromophenol blue for protein detection, imidazole-buffered osmium tetroxide selective staining of unsaturated lipids, lanthanum nitrate for intercellular junction identification and zinc-iodide-osmium tetroxide for cytoplasmic endomembrane visualization. The results in both species corroborated the lipid nature of the gland secretion and showed in A. mellifera the poverty of the synthetic machinery in the worker gland cells in comparison with the queen, as expected by previous biochemical analyses. The pathway of the exogenous compounds of the secretion is intracellular, since substances can penetrate the cell folds and intercellular junctions, but their access to the, gland lumen is barred by the apical intercellular junctions.
Resumo:
The protein complement of the secretion from hypopharyngeal gland of nurse-bees (Apis mellifera L.) was partially identified by using a combination of 2D-PAGE, peptide sequencing by MALDI-PSD/MS and a protein engine identification tool applied to the honeybee genome. The proteins identified were compared to those proteins already identified in the proteome complement of the royal jelly of the honey bees. The 2D gel electrophoresis demonstrated this protein complement is constituted of 61 different polypepides, from which 34 were identified as follows: 27 proteins belonged to MRJPs family, 5 proteins were related to the metabolism of carbohydrates and to the oxido-reduction metabolism of energetic Substrates, I protein was related to the accumulation of iron in honeybee bodies and I protein may be a regulator of MRJP-1 oligomerization. The proteins directly involved with the carbohydrates and energetic metabolisms were: alpha glucosidase, glucose oxidase and alpha amylase, whose are members of the same family of enzymes, catalyzing the hydrolysis of the glucosidic linkages of starch; alcohol dehydrogenase and aldehyde dehydrogenase, whose are constituents of the energetic metabolism. The results of the present manuscript support the hypothesis that the most of these proteins are produced in the hypoharyngeal gland of nurse-bees and secreted into the RJ. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Morphologically,. The salivary glands of ticks are paired structures consisting of a secretory and an excretory portion, lacking a reservoir for the storage of the secretion. The secretory portion is composed in females by cells that form acini classified into the types I, II, and III. The excretory possess a major duct, from which arise several intermediate ducts that then subdivide to form the canaliculi or acinal tubules, which end at the acini from where they collect the secretion. The present Study describes the ultrastructural changes that occur in the mitochondria of cells of the acini I, II, and III in the salivary glands of partially engorged females of the Cayenne tick Amblyomma cajennense. The results show that this organelle exhibits completely disarrayed crests due to the presence of lipidic material inside the matrix and between the crests, thus demonstrating their participation in the production of the lipids that would be used structurally by the cells. These organelles with ultrastructural changes were denominated derived mitochondria. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Trigona hypogea, T. crassipes, and T. necrophaga are obligate necrophagous bees that differ from the majority of bees by using animal material instead of pollen as a protein resource. Since T. hypogea does not store protein in cerumen pots, it was thought that glandular secretions were its only larval protein source. This is in contrast to T. necrophaga which stores a yellowish proteinaceous jelly in the pots. Our results show that the larval food of T. hypogea has a higher protein content than the food stored in the pots and that it presents an electrophoretical protein pattern similar to that of the hypopharyngeal gland, indicating that workers add glandular secretions to the larval food while provisioning the brood cells. Thus, it can be suggested that T. hypogea has a provisioning behavior similar to other Meliponinae. The presence of several bands of proteins in the food stored in the pots shows that this species stores carrion mixed with honey in storage pots. Morphological data suggest that both larvae and adults make use of the same foodstuffs. These results also suggest that T. hypogea is more similar to other necrophagous species than it is to T. necrophaga (a more specialized bee).
Resumo:
The mandibular gland in Melipona bicolor workers and queens was studied by scanning and transmission electron microscopy. There is no difference in the gland anatomy between the castes, but the transmission electron microscopy showed variation of the cellular ultrastructure according to the secretory phase of the gland in both castes. Smooth endoplasmic reticulum was abundant in the secretory cells of physogastric queens, indicating that these cells produce lipid secretion that is stored in granules with multi-lamellar bodies. Mitochondrial variations during the cell secretory cycle indicates their participation in the lipid synthesis. After secretion, release in the reservoir lumen through the collecting canals, the secretory cells contain many myelinic bodies, indicative of cellular regression. (C) 2004 Elsevier Ltd. All rights reserved.