94 resultados para Printing in three-dimensional imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to quantify cephalometric and three-dimensional alterations of the posterior airway space of patients who underwent maxillomandibular advancement surgery. 20 patients treated by maxillomandibular advancement were selected. The minimal postoperative period was 6 months. The treated patients underwent cone-beam computed tomography at 3 distinct time intervals, preoperative (T1), immediate postoperative period up to 15 days after surgery (T2), and late postoperative period at least 6 months after surgery. The results showed that the maxillomandibular advancement promoted an increase in the posterior airway space in each patient in all the analyses performed, with a statistically significant difference between T2 and T1, and between T3 and T1, p < 0.05. There was a statistical difference between T2 and T3 in the analysis of area and volume, which means that the airway space became narrower after 6 months compared with the immediate postoperative period. The maxillomandibular advancement procedure allowed great linear area and volume increase in posterior airway space in the immediate and late postoperative periods, but there was partial loss of the increased space after 6 months. The linear analysis of airway space has limited results when compared with analysis of area and volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractures of the mandibular angle deserve particular attention because they represent the highest percentage of mandibular fractures and have the highest postsurgical complication rate, making them the most challenging and unpredictable mandibular fractures to treat. Despite the evolution in the treatment of maxillofacial trauma and fixation methods, no single treatment modality has been revealed to be ideal for mandibular angle fractures. Several methods of internal fixation have been studied with great variation in complications rates, especially postoperative infections. Recently, new studies have shown reduction of postsurgical complications rates using three-dimensional plates to treat mandibular angle fractures. Nevertheless, only few surgeons have used this type of plate for the treatment of mandibular angle fractures. The aim of this clinical report was to describe a case of a patient with a mandibular angle fracture treated by an intraoral approach and a three-dimensional rectangular grid miniplate with 4 holes, which was stabilized with monocortical screws. The authors show a follow-up of 8 months, without infection and with occlusal stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the use of a collagen-based membrane compared with no treatment on guided bone regeneration by 3-dimensional computerized microtomography (mu CT).Study Design. Defects were created between the mesial and distal premolar roots of the second and third premolars (beagle dogs; n = 8). A collagen-based membrane (Vitala; Osteogenics Biomedical Inc., TX, USA) was placed in one of the defects (membrane group; n = 16), and the other was left untreated (no-membrane group; n = 16). Left and right sides provided healing samples for 2 and 16 weeks. Three-dimensional bone architecture was acquired by mu CT and categorized as fully regenerated (F, bone height and width) or nonregenerated (N).Results. Chi-square tests (95% level of significance) showed that tooth did not have an effect on outcome (P = .5). Significantly higher F outcomes were observed at 16 weeks than 2 weeks (P = .008) and in membrane group than in no-membrane group (P = .008).Conclusions. The collagen-based membrane influenced bone regeneration at the furcation. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:437-443)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray crystal structure of a complex between ribonuclease T-1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2.0 Angstrom resolution. This Ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. on the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T-1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(S-p)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [:Steyaert, J., and Engleborghs (1995) fur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T-1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by, Greiner et al. [Nature (London 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three. (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief review of a three-dimensional (3D) numerical method to solve few-nucleon bound and scattering states, without the standard partial-wave (PW) decomposition, is presented. The approach is applied to three-and four-nucleon bound states, by considering the solutions of the corresponding Faddeev-Yakubovsky (FY) integral equations in momentum space. Realistic spin-isospin dependent 3D and PW formalism are presented for the alpha particle and the triton binding energies, with numerical results given in both schemes for comparison.