87 resultados para Pluripotent Stem Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell therapy has frequently been reported as a possible treatment for spinal trauma in humans and animals; however, without pharmacologically curative action on damage from the primary lesion. In this study, we evaluated the effect of administering human adipose-derived stem cells (hADSC) in rats after spinal cord injury. The hADSC were used between the third and fifth passages and a proportion of cells were transduced for screening in vivo after transplantation. Spinal cord injury was induced with a Fogarty catheter no. 3 inserted into the epidural space with a cuff located at T8 and filled with 80 mu L saline for 5 min. The control group A (n = 12) received culture medium (50 mu L) and group B (n = 12) received hADSC (1.2 x 10(6)) at 7 and 14 days post-injury, in the tail vein. Emptying of the bladder by massage was performed daily for 3 months. Evaluation of functional motor activity was performed daily until 3 months post-injury using the Basso-Beattie-Bresnahan scale. Subsequently, the animals were euthanized and histological analysis of the urinary bladder and spinal cord was performed. Bioluminescence analysis revealed hADSC at the application site and lungs. There was improvement of urinary bladder function in 83.3% animals in group B and 16.66% animals in group A. The analysis of functional motor activity and histology of the spinal cord and urinary bladder demonstrated no significant difference between groups A and B. The results indicate that transplanted hADSC improved urinary function via a telecrine mechanism, namely action at a distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendinous lesions are very common in athlete horses. The process of tendon healing is slow and the quality of the new tissue is often inferior to the original, leading in many cases to recurrence of the lesion. One of the main reasons for the limited healing capacity of tendons is its poor vascularization. At present, cell therapy is used in equine practice for the treatment of several disorders including tendinitis, desmitis and joint disease. However, there is little information regarding the mechanisms of action of these cells during tissue repair. It is known that Mesenchymal Stem Cells (MSCs) release several growth factors at the site of implantation, some of which promote angiogenesis. Comparison of blood flow using power Doppler ultrasonography was performed after the induction superficial digital flexor tendon tendinitis and implantation of adipose tissue-derived MSCs in order to analyze the effect of cell therapy on tendon neovascularization. For quantification of blood vessel histopathological examinations were conducted. Increased blood flow and number of vessels was observed in treated tendons up to 30 days after cell implantation, suggesting promotion of angiogenesis by the cell therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem cells are pluripotent and able to generate all cell types of the body, being the most promising cells to the study for regenerative medicine. Following the differentiation path, there are adult stem cells, which are committed with a specific cell lineage, creating limitations on their application. On the extreme opposite of embryonic stem cells there are the induced pluripotent stem cells, originated from a somatic cell after genetic reprogramming. Induced pluripotent stem cells are a recent science discovery and may substitute the use of embryonic stem cells in future research. But with nowadays knowledge, the use of adult stem cells and induced pluripotent stem cells are limited due to high expenses and long time process demand. Moreover, the development achieved on all kinds of stem cells study are, in some part, due to the study of embryonic stem cells, what makes the study of these cell type still mandatory. © Todos os direitos reservados a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study assessed the effects of a single intracoronary injection of autologous stem cells on the cardiac function of dogs with Chagas cardiomyopathy. Bone-marrow-derived stem cells were delivered into the right and left coronary arteries of 5 mature dogs with mildly compromised cardiac function due to chronic Chagas cardiomyopathy. Blood pressure and electrocardiographic and echocardiographic parameters were recorded at monthly intervals for 6 mo in the 3 dogs that survived. Although no changes were observed in the electrocardiogram and blood pressure, there was a significant increase in peak velocity of aortic flow 3 mo after stem cell transplantation. Pre-ejection period, isovolumic relaxation time, and the Tei index of myocardial performance were reduced significantly 4 mo after the procedure. All significant changes persisted to the end of the study. The results suggest that the transplantation of autologous bone-marrow-derived stem cells into the coronary arteries of dogs with Chagas cardiomyopathy may have a beneficial effect but the small number of dogs studied was a limitation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Embryonic stem cells are cells derived from early-stage embryos that are characterized by pluripotency and self-renewal capacity. The in vitro cultured murine embryonic stem cells can indefinitely propagate in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). However, when stimulated, these cells can differentiate into cell lines derived from all three embryonic germ layers. The trichostatin A (TSA) is an epigenetic modifier agent and several studies have used the TSA to stimulate cellular differentiation. However, most of these studies only assessed one TSA concentration. Therefore, this study aimed to evaluate the effects of different TSA concentrations on histone hyperacetylation during in vitro cell differentiation of murine pluripotent embryonic stem cells, cultured with or without LIF, in the quest of to standardize their application on early cultures of embryonic stem cells.Materials, Methods & Results: Undifferentiated murine embryonic stem cells were plated in the presence of different TSA concentrations (0 nM, 15 nm, 50 nM and 100 nM) in the presence or absence of LIF. Thus, the treatments were evaluated in undifferentiated embryonic stem cells cultured in the presence of LIF (Control group: 0 nM LIF(+); Group 15 nM LIF+; Group 50 nM LIF+ and Group 100 nM LIF+), and in embryonic stem cells cultured in the absence of LIF (Control group: 0 nM LIF; Group 15 nM LIF(-); Group 50 nM LIF(-) and Group 100 nM LIF-). Treatment with TSA was performed for 24 h. After that the medium was replaced with fresh medium without TSA. Samples were collected at 0, 12, 24, 36 and 48 h after the beginning of the experiment. Three replicates were performed in each experimental group. The relative amount of Histone H3 lysine 9 acetylation was analyzed in all groups, as well as the cell proliferation in the embryonic stem cells cultured in the presence of LIF. In the control group (0 nM), the absence of LIF resulted in higher levels (P < 0.05) of H3lys9ac compared to the cultures supplemented with LIF. In the embryonic stem cells cultured in the presence of LIF, the 50 nM and 100 nM treatments resulted in higher levels (P < 0.05) of H3lys9ac when compared with 0 nM and 15 nM treatments. Evaluating the Hoechst area in the 0 nM group, it was observed that the number of cells increased (P < 0.05) according to the time of culture. Treatment with 15 nM also reflected a similar distribution, but the Hoechst area in 15 nM group was lower (P < 0.05) at 24 and 48h when compared to the observed in the control group. In the 100 nM treatment, was observed that the area of Hoechst was lower (P < 0.05) to that obtained in the control group at 12, 24 and 48h. In addition, it was observed that treatment with TSA induces greater cellular differentiation when compared to control groups in stem cells cultured in the presence of LIF as well as in the absence of LIF.Discussion: In the present study it was observed that TSA treatment increased the levels of histone acetylation in murine embryonic stem cells at a 50 nM concentration, making it possible to reduce the concentration recommended in the literature (100 nM). In addtion, it was concluded that the lower TSA concentrations utilized (15 nm and 50 nM) was less harmful to cellular proliferation than the 100 nM TSA concentration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superficial digital flexor tendonitis is an important cause of lameness in horses and its incidence ranges from 13% to 30%, depending on the horse's activity. This injury can occur in yearlings and compromise its carriers by reinjury or even impossibility to return to athletic life. In spite of the long period required for tendon repair, the scar tissue presents lack of elasticity and stiffness. As current treatment strategies produce only marginal results, there has been great interest in research of therapies that influence the quality or the speed of tendon repair. Stem cell therapy has shown promising results in degenerative diseases and cases of deficient healing processes. This study aims to evaluate the influence of autologous mesenchymal bone marrow stem cells in tendon healing, comparing treated and non-treated tendons. Superficial digital flexor tendonitis lesions were induced by collagenase infiltration in both forelimbs of 6 horses, followed by autologous implant in one of the forelimbs of each animal. The horses were evaluated using clinical, ultrasonographic, histopathologic, and immunohistochemical parameters. Tendon biopsies were performed at Day 48. Results found in the treatment group, such as high inflammatory cells infiltration, extracellular matrix synthesis, reduced amount of necrosis areas, small increase in cellular proliferation (KI-67/MIB-1), and low immunoreactivity to transforming growth factor P I, suggested the acceleration of tendon repair in this group. Further studies should be conducted in order to verify the influence of this treatment on later phases of tendon repair. Overall, after analysis of the results, we can conclude that cellular therapy with the mononuclear fraction of bone marrow has accelerated tendon repair at 48 days after treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)