97 resultados para Pit and fissure sealant
Resumo:
Monofilamentary tapes (150 pm thickness) were prepared by swaging and rolling silver tubes containing the Bi:2212 ceramic (granulation below 20 mum) and the silver powder (about 0.8 mum). The study has been made, among other samples, on tapes with nominal proportions of 0, 10 and 20 wt.% of silver. The samples were characterized by SEM, and by electrical measurements under varying applied magnetic field. The measurements of J(c) showed that the addition of 10 wt.% silver powder is very beneficent to this property, doubling the obtained values at 60 K, while the 20 wt.% tape presented very low J(c). The tape with no silver content showed to have a J(c) as high as 2.2 x 10(5) A/cm(2), at 4.2 K, zero applied magnetic field. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It has been characterized and evaluated the 2024-T351 and 7050-T7451 aluminum alloys pitting corrosion in naturally aerated chloride aqueous solutions containing chromate, molybdate and tungstate. It has been carried out electrochemical and non-electrochemical immersion corrosion tests accompanied by surface metallography analysis using an optical microscopy. Chromate for the two alloys and in molybdate for 7050 has corrosion inhibiting effects, whereas tungstate promotes the pitting corrosion for these alloys. Quantitative surface analysis upon the alloys after immersion has indicated that pits are predominantly conical or quasi-conical and irregular. In general, pits have been wider than deep and the widest have been also the deepest. Despite inhibitor presence, when pits have been nucleated, they grow with the same intensity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This article presents a case report of autogenous tooth transplantation to the site of the fissure, in addition to bone augmentation with graft of autogenous bone harvested from the iliac crest, performed in a cleft palate patient, who had insufficient bone volume. A non-syndromic 10-year-old girl, with a unilateral cleft lip and palate, incisal transforamen fissures, agenesis of the maxillary left central incisor and both maxillary lateral incisors, was treated with autogenous bone graft in the cleft area. The orthodontic treatment plan was to replace the missing lateral incisors with the maxillary canines and to extract the mandibular first premolars. One of the mandibular premolars was extracted from its site with 2/3 of its root formation completed and transplanted to the maxillary left central incisor area. After orthodontic treatment, the anatomic crowns were characterized with composite resin. Autogenous tooth transplantation can be performed in the area of the fissure in young cleft palate patients, by performing bone graft augmentation before transplantation of the tooth, to gain sufficient recipient alveolar bone volume. A multidisciplinary approach is mandatory for the success of this clinical procedure, especially in cleft palate patients. © 2012 John Wiley & Sons A/S.
Resumo:
Background:Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation.Methodology/Principal Findings:Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group.Conclusions/Significance:In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function. © 2013 Barbizan et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3 mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5 mu g rhBMP-2), P-1 (defect filled with 5 mu g P-1), FS (defect filled with 8 mu g FS), FS/rhBMP-2 (defect filled with 8 mu g FS and 5 mu g rhBMP-2), FS/P-1 (defect filled with 8 mu g FS and 5 mu g P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p < 0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p > 0.05). A statistically significant difference (p < 0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.
Resumo:
The addition of two compounds, calcium silicate and calcium zirconate was tested in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method. The wires were treated in an atmosphere of O-2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. It was found that the addition of calcium silicate or zirconate promoted higher transition temperatures, up to 116 K for BSCCO with 1wt.% CaSiO3. The critical current densities determined by transport and magnetization measurements were improved in comparison with the wires without any addition.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.
Resumo:
Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study.
Resumo:
The addition of two compounds, calcium silicate and calcium zirconate was tested, in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method, which were successfully tested previously in processing chips. The wires were treated in an atmosphere of O2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. As the results, transition temperatures were higher than the expected for this stage, ranged from 105K (BSCCO880) to 116K (+Si883). The critical current densities encountered in transport and magnetization measurements were improved in comparison with the wires without addition.