60 resultados para Photoexcitation spectra
Resumo:
The C 2 * radical is used as a system probe tool to the reactive flow diagnostic, and it was chosen due to its large occurrence in plasma and combustion in aeronautics and aerospace applications. The rotational temperatures of C 2 * species were determined by the comparison between experimental and theoretical data. The simulation code was developed by the authors, using C++ language and the object oriented paradigm, and it includes a set of new tools that increase the efficacy of the C 2 * probe to determine the rotational temperature of the system. A brute force approach for the determination of spectral parameters was adopted in this version of the computer code. The statistical parameter c 2 was used as an objective criterion to determine the better match of experimental and synthesized spectra. The results showed that the program works even with low-quality experimental data, typically collected from in situ airborne compact apparatus. The technique was applied to flames of a Bunsen burner, and the rotational temperature of ca. 2100 K was calculated.
Resumo:
The charged particle transverse momentum (pT) spectra are presented for pp collisions at √s = 0:9 and 7TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 μb-1 and 2.96 pb-1, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with leading and next-toleading order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT - 2pT=ps over the pT range up to 136 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at √s = 2:76TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy. Copyright CERN.
Resumo:
The performance of advanced electronic ceramics is directly related to the synthesis route employed. Sol-gel methods are widely used for this purpose. However, the physicochemical intermediate steps are still not well understood. Better understanding and control of these processes can improve the final quality of samples. In this work, we studied theoretically the formation of metal complexes between citric acid and lithium or barium metal cations with different citric acid/metal proportions, using Density Functional Theory electronic structure calculations. Infrared and Raman scattering spectra were simulated for the more stable geometric configurations. Using this methodology, we identified some features of complexes formed in the synthesis process. Our results show that the complexes can be distinguished by changes in the bands assigned to C=O, COH-, and COO- group vibrations. An estimate of the most stable complexes is made based on total energy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New compounds with the general formulae [(NH3)(L)ZnFE(CO4] (L = ethylenediamine, N-methylethylenediamine, N,N′-dimethylethylenediamine and 1,3-propanediamine) were prepared and studied by vibrational spectroscopy. The data suggest that they may be formulated as monomers with a trigonal bipyramidal configuration around the iron atom. © 1984.
Resumo:
The thermal decomposition of pyrrolidinedithiocarbamate and piperidinedithiocarbamate complexes of CoII, NiII, CuII and HgII have been studied by thermogravimetry and differential scanning calorimetry. The decomposition intermediates and final products were identified by their X-ray diffraction patterns. The i.r. spectra are discussed in terms of the thermal decomposition pathways.
Resumo:
Assuming massive constituent gluons the mass spectroscopy of glueballs and hybrids is analysed in the framework of the potential model. Only pairwise potentials are considered.
Resumo:
Results of photoluminescence measurements for natural and synthetic alexandrite (BeAl2O4:Cr3+) are presented, where the samples are excited by the 488 nm line of an Ar+ laser, at different temperatures. The main issue is the analysis of the Cr3+ transition in the chrysoberyl matrix (BeAl2O4), with major technological application as active media for laser action. Results indicate anomalous behavior of Cr3+ transition depending on the measurement temperature. A simple model to explain the phenomena is suggested.