158 resultados para Photodynamic therapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aim of this study was investigate the effect of photodynamic therapy (PDT) using curcumin (C) as a photosensitizing agent irradiated with an LED (L) in the blue wavelength as a light source on a standard and clinical isolate of Streptococcus mutans (S. mutans) in a planktonic suspension model. Materials and methods: Suspensions of both strains were divided into 4 groups as follows: absence of C and L (control group: C–L–), with C and without L (C group: C+L–), absence of C with L (L group: C–L+) and presence of C and L (PDT group: C+L+). Three different concentrations of curcumin (0.75 mg/ml, 1.5 mg/ml and 3 mg/ml) and three light fluences of studied light source (24, 48 and 72 J cm–2) were tested. Aliquots of each studied group was plated in BHI agar and submitted to colony forming units counting (CFU/ml) and the data transformed into logarithmical scale. Results: A high photoinactivation rate of more than 70% was verified to standard S. mutans strain submitted to PDT whereas the clinical isolate showed a lower sensitivity to all the associations of curcumin and LED. A slight bacterial reduction was verified to C+L– and C–L+, demonstrating no toxic effects to the isolated application of light and photosensitizer to both S. mutans strains tested. Conclusion: Photodynamic therapy using a combination of curcumin and blue LED presented a substantial antimicrobial effect on S. mutans standard strain in a planktonic suspension model with a less pronounced effect on its clinical isolate counterparts due to resistance to this alternative approach. Clinical significance: Alternative antimicrobial approaches, as photodynamic therapy, should be encouraged due to optimal results against cariogenic bacteria aiming to prevent or treat dental caries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a promising method for localized and specific inactivation of fungi and bacteria. A nontoxic light-sensitive compound is taken up by cells, which are then exposed selectively to light, which activates toxicity of the compound. We investigated the potential of sublethal PDT using light-sensitive curcumin (CUR) in combination with blue (455 nm) light to promote reactive oxygen species (ROS) formation in the form of singlet oxygen and DNA damage of Candida albicans. Surprisingly, CUR-mediated PDT but also light alone caused significantly longer comet tails, an indication of DNA damage of C. albicans when compared with the negative control. The intracellular ROS production was also significantly higher for the group treated only with light. However, PDT compared to blue light alone significantly slowed DNA repair. Comet tails decreased during 30 min visualized as a 90% reduction in length in the absence of light for cells treated with light alone, while comet tails of cells treated with PDT only diminished in size about 45%. These results indicate that complex mechanisms may result in PDT in a way that should be considered when choosing the photosensitive compound and other aspects of the treatment design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to evaluate the photodynamic therapy (PDT) effect on root canals contaminated with Enterococcus faecalis using a light emitting diode (LED) light and a curcumin solution (CUR) as photosensitizer (PS). Eighty root canals from uniradicular human teeth were prepared with Protaper Universal rotary system and contaminated with E. faecalis for 21 days. They were divided as: GIa-PDT (CUR, pre-irradiation for 5 + 5 min of irradiation); GIb-PDT (CUR, pre-irradiation for 5 + 10 min of irradiation); GIIa-(CUR, pre-irradiation for 5 + 5 min without irradiation); GIIb-(CUR pre-irradiation for 5 + 10 min of irradiation); GIIIa-(physiological solution and irradiation for 5 min); and GIIIb-(physiological solution and irradiation for 10 min); positive and negative control groups. Collections from root canals were made at time intervals of 21 days after contamination, immediately after treatment, and 7 days after treatment, and submitted to colony forming units per milliter (CFU mL-1) counts. The data were submitted to ANOVA and Tukey multiple comparison tests, at a level of significance of 5 %. In the immediate post-treatment collection, group GIa showed greater bacterial reduction in comparison with GIIa, GIIb, GIIIa, GIIIb, and positive control (P < 0.05). At 7 days post-treatment, GIa showed significant bacterial reduction only in comparison with GIIIa (P < 0.05). Curcumin as sensitizer was effective by 5 min LED irradiation but not by 10 min irradiation PDT using LED light, and curcumin as PS was not effective in eliminating E. faecalis. No difference was observed for periods of irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The management of aggressive periodontitis (AgP) represents a challenge for clinicians because there are no standardized protocols for an efficient control of the disease. This randomized controlled clinical trial evaluated the effects of repeated applications of antimicrobial photodynamic therapy (aPDT) adjunctive to scaling and root planing (SRP) in patients with AgP. Methods: Using a split-mouth design, 20 patients with generalized AgP were treated with aPDT + SRP (test group) or SRP only (control group). aPDT was applied at four periods. All patients were monitored for 90 days. Clinical, microbiologic, and immunologic parameters were statistically analyzed. Results: In deep periodontal pocket analysis (probing depth [PD] >= 7 mm at baseline), the test group presented a decrease in PD and a clinical attachment gain significantly higher than the control group at 90 days (P < 0.05). The test group also demonstrated significantly less periodontal pathogens of red and orange complexes and a lower interleukin-1 beta/interleukin-10 ratio than the control group (P < 0.05). Conclusion: The application of four sessions of aPDT, adjunctive to SRP, promotes additional clinical, microbiologic, and immunologic benefits in the treatment of deep periodontal pockets in single-rooted teeth in patients with AgP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The aim of this study was to compare antimicrobial photodynamic therapy (aPDT) as an adjunctive treatment to scaling and root planing (SRP) for induced periodontitis in nicotine-modified rats. Material & Methods A total of 240 rats were evenly divided into two groups: C – saline solution treatment; N – nicotine treatment. Periodontal disease was induced in both groups at the first mandibular molar. After 7 days, the ligature was removed. All animals were submitted to SRP and were divided according to the following treatments: SRP – irrigation with saline solution; Toluidine Blue-O (TBO) – irrigation with phenothiazinium dye (100 μg/ml); LLLT – laser irradiation (660 nm; 0.03 W; 4 J); and aPDT – TBO and laser irradiation. Ten animals in each group/treatment were euthanized at 7, 15 and 30 days. The histometric and immunohistochemical values were statistically analysed. Results Intragroup analysis demonstrated that in both groups the aPDT treatment resulted in lower bone loss (BL) when compared to SRP in all experimental periods. Intergroup analysis demonstrated that aPDT treatment resulted in lower BL in Group N than in Group C treated with SRP in all experimental periods. Conclusion Antimicrobial photodynamic therapy was an effective adjunctive treatment to SRP for induced periodontitis in nicotine-modified rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals that are capable of inducing cell death. The present study evaluated the susceptibility of Streptococcus mutans and Lactobacillus acidophilus to PDT grown as multi-species in the biofilm phase versus in dentine carious lesions. A brain-heart infusion culture medium supplemented with 1 % glucose, 2 % sucrose, and 1 % young primary culture of L. acidophilus 108 CFU/mL and S. mutans 108 CFU/mL was used to develop multi-species biofilms and to induce caries on human dentine slabs. Five different concentrations of curcumin (0.75, 1.5, 3.0, 4.0, and 5.0 g/L) were used associated with 5.7 J/cm2 light emission diode. Four different groups were analyzed L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (PDT group). ANOVA/Tukey's tests were conducted to compare groups. A significant reduction (p <0.05) in cell viability was observed in the biofilm phase following photosensitization with all curcumin concentrations tested. To achieve significant bacterial reduction (p <0.05) in carious dentine, it was necessary to utilize 5.0 g/L of curcumin in association with blue light. No significant reduction was found for L-D+, supporting the absence of the drug's dark toxicity. S. mutans and L. acidophilus were susceptible to curcumin in the presence of blue light. However, due to light penetration and drug diffusion difficulties, these microorganisms within dentine carious lesions were less affected than they were in the biofilm phase. © 2013 Springer-Verlag London.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)