57 resultados para Percolation threshold
Resumo:
A multi-agent system with a percolation approach to simulate the driving pattern of Plug-In Electric Vehicle (PEV), especially suited to simulate the PEVs behavior on any distribution systems, is presented. This tool intends to complement information about the driving patterns database on systems where that kind of information is not available. So, this paper aims to provide a framework that is able to work with any kind of technology and load generated of PEVs. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with corresponding load level, and their relationships with the neighboring zones are represented as network probabilities. A percolation approach is used to characterize the autonomy of the battery of the PVEs to move through the city. The methodology is tested with data from a mid-size city real distribution system. The result shows the sub-area where the battery of PEVs will need to be recharge and gives the planners of distribution systems the necessary input for a medium to long term network planning in a smart grid environment. © 2012 IEEE.
Resumo:
This work combines symbolic machine learning and multiscale fractal techniques to generate models that characterize cellular rejection in myocardial biopsies and that can base a diagnosis support system. The models express the knowledge by the features threshold, fractal dimension, lacunarity, number of clusters, spatial percolation and percolation probability, all obtained with myocardial biopsies processing. Models were evaluated and the most significant was the one generated by the C4.5 algorithm for the features spatial percolation and number of clusters. The result is relevant and contributes to the specialized literature since it determines a standard diagnosis protocol. © 2013 Springer.
Resumo:
To assess the effects of continuous exercise training at intensities corresponding to 80 and 90 % of the lactate minimum test (LM), we evaluated antioxidant activity, hormone concentration, biochemical analyses and aerobic and anaerobic performance, as well as glycogen stores, during 12 weeks of swimming training in rats. One-hundred rats were separated into three groups: control (CG, n = 40), exercise at 80 (EG80, n = 30) and 90 % (EG90, n = 30) of LM. The training lasted 12 weeks, with sessions of 60 min/day, 6 days/week. The intensity was based at 80 and 90 % of the LM. The volume did not differ between training groups (Ẋ of EG80 = 52 ± 4 min; Ẋ of EG90 = 56 ± 2 min). The glycogen concentration (mg/100 mg) in the gastrocnemius increased after the training in EG80 (0.788 ± 0.118) and EG90 (0.795 ± 0.157) in comparison to the control (0.390 ± 0.132). The glycogen stores in the soleus enhanced after the training in EG90 (0.677 ± 0.230) in comparison to the control (0.343 ± 0.142). The aerobic performance increased by 43 and 34 % for EG80 and EG90, respectively, in relation to baseline. The antioxidant enzymes remain unchanged during the training. Creatine kinase (U/L) increased after 8 weeks in both groups (EG80 = 427.2 ± 97.4; EG90 = 641.1 ± 90.2) in relation to the control (246.9 ± 66.8), and corticosterone (ng/mL) increased after 12 weeks in EG90 (539 ± 54) in comparison to the control (362 ± 44). The continuous exercise at 80 and 90 % of the LM has a marked aerobic impact on endurance performance without significantly biomarkers changes compared to control. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
In this work we solved the time dependent Ginzburg-Landau equations to simulate homogeneous superconducting samples with square geometry for several lateral sizes. As a result of such simulations we notice that in the Meissner state, when the vortices do not penetrate the superconductor, the response of small samples are not coincident with that expected for the bulk ones, i.e., 4. πM=. -. H. Thus, we focused our analyzes on the way which the M(. H) curves approximate from the characteristic curve of bulk superconductors. With such study, we built a diagram of the size of the sample as a function of the temperature which indicates a threshold line between macroscopic and bulk behaviors. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.
Resumo:
Power-counting arguments are used to organize the interactions contributing to the NN-->d pi,pn pi reactions near threshold. We estimate the contributions from the three formally leading mechanisms: the Weinberg-Tomozawa (WT) term, the impulse term, and the Delta-excitation mechanism. Subleading but potentially large mechanisms, including S-wave pion rescattering, the Galilean correction to the WT term, and short-ranged contributions are also examined. The WT term is shown to be numerically the largest, and the other contributions are found to approximately cancel. Similarly to the reaction pp-->pp pi(0), the computed cross sections are considerably smaller than the data. We discuss possible origins of this discrepancy.
Resumo:
The aim is to evaluate the influence of oral contraceptive intake and menstrual cycle on the electrical activity and pressure pain threshold from anterior temporal and masseter muscles. Twenty-eight women on reproductive age were selected, 13 OC users and 15 nonusers. They were weekly submitted to electromyography and algometry of the anterior temporal and masseter muscles during three consecutive menstrual cycles. Electrical activities at rest position and PPTs of temporal and masseter muscles were not affected by menstrual cycle or by OCs uses. Comparison between groups demonstrated that working side electrical activity was increased in OC users in both muscles, except during lutheal phase for the anterior temporal. However, comparison within weeks did not demonstrate statistical difference. It was suggested that, in healthy women, oral contraceptive use may influence electrical activity, but different phases of the cycle may not.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)