53 resultados para PARASITE PLASMODIUM-FALCIPARUM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite vast efforts and expenditures in the past few decades, malaria continues to kill millions of persons every year, and new approaches for disease control are urgently needed. To complete its life cycle in the mosquito, Plasmodium, the causative agent of malaria, has to traverse the epithelia of the midgut and salivary glands. Although strong circumstantial evidence indicates that parasite interactions with the two organs are specific, hardly any information is available about the interacting molecules. By use of a phage display library, we identified a 12-aa peptide-salivary gland and midgut peptide 1 (SM1)-that binds to the distal lobes of the salivary gland and to the luminal side of the midgut epithelium, but not to the midgut surface facing the hemolymph or to ovaries. The coincidence of the tissues with which parasites and the SM1 peptide interact suggested that the parasite and peptide recognize the same surface ligand. In support of this hypothesis, the SM1 peptide strongly inhibited Plasmodium invasion of salivary gland and midgut epithelia. These experiments suggest a new strategy for the genetic manipulation of mosquito vectorial capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Plasmodium vivax is the most prevalent malaria species in Brazil. The parasite-host coevolutionary process can be viewed as an 'arms race', in which adaptive genetic changes in one are eventually matched by alterations in the other. Methods: Following the candidate gene approach we analyzed the CD40, CD40L and BLYS genes that participate in B-cell co-stimulation, for associations with P. vivax malaria. The study sample included 97 patients and 103 controls. We extracted DNA using the extraction and purification commercial kit and identified the following SNPs: 21C.T in the CD40 gene, 2726T.C in the CD40L gene and the 2871C.T in the BLyS gene using PCR-RFLP. We analyzed the genotype and allele frequencies by direct counting. We also compared the observed with the expected genotype frequencies using the Hardy-Weinberg equilibrium. Results: The allele and genotype frequencies for these SNPs did not differ statistically between patient and control groups. Gene-gene interactions were not observed between the CD40 and BLYS and between the CD40L and BLYS genes. Overall, the genes were in Hardy-Weinberg equilibrium. Significant differences were not observed among the frequencies of antibody responses against P. vivax sporozoite and erythrocytic antigens and the CD40 and BLYS genotypes. Conclusions: The results of this study show that, although the investigated CD40, CD40L and BLYS alleles differ functionally, this variation does not alter the functionality of the molecules in a way that would interfere in susceptibility to the disease. The variants of these genes may influence the clinical course rather than simply increase or decrease susceptibility. © Royal Society of Tropical Medicine and Hygiene 2013. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)