92 resultados para Operating room technicians
Resumo:
Violet-blue photoluminescence was produced at room temperature in a structurally disordered SrZrO3 perovskite structure with a 350.7 nm excitation line. The intensity of this emission was higher than that of any other perovskites previously studied. The authors discuss the role of structural order-disorder that favors the self-trapping of electrons and charge transference, as well as a model to elucidate the mechanism that triggers photoluminescence. In this model the wide band model, the most important events occur before excitation. (c) 2007 American Institute of Physics.
Resumo:
This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Twelve isolates of Paracoccidioides brasiliensis generated cerebriform colonies at room temperature on potato glucose agar slants (PDA). These isolates contained abundant chlamydospores and yeast-like cells and are a subset of the 65 isolates obtained from nine-banded armadillos (Dasypus novemcinctus). They grew as a yeast form with typical multiple buddings at 37 degreesC on brain heart infusion agar supplemented with 1% glucose. After replating on PDA and culturing at room temperature for 2 months, the mutants appeared as cottonous colonies, which indicated that the morphological characteristics were unstable.
Resumo:
We show room temperature charge-density wave (CDW) characteristics in d.c. and a.c. electric data in pressed pellets of lightly doped poly(3-methylthiophene). The possibility of a Peierls glass is discussed and metastables states are observed. D.C. and A.C. data also show a state with negative differencial resistance.
Resumo:
Room temperature ferromagnetic behavior has been observed in pressed pellets of doped poly(3-methylthiophene). In this work we show that thermoremance data taken in two different ways favours the interpretation of data in terms of the Dzialoshinski-Moriya anisotropic superexchange interaction of the polarons via dopant anions giving rise to weak ferromagnetism.
Resumo:
Room temperature data of impedance and phase angle in pellets of electrochemically synthesized ClO4- doped poly(3-methylthiophene) (P3MT) were analyzed assuming the sample being represented by a parallel resistor-capacitor (RC) circuit or by a series RC circuit. The last assumption proved to be the correct one, and to confirm it we use the sample as the RC component of a resistor-capacitor-inductor series resonator. We discuss the possibility of this RC series behavior to be due to a charge-density wave characteristic also evidenced from the huge values of the low-frequency dielectric constant of the system.
Resumo:
Strong photoluminescent emission has been measured at room temperature for noncrystalline BaT'O-3 (BT) perovskite powders. A joint experimental and theoretical study has been carried out to rationalize this phenomenon. From the experimental side, BT powder samples have been synthesized following a soft chemical processing, their crystal structure has been confirmed by x-ray data and the corresponding photoluminescence (PL) properties have been measured. Only the structurally disordered samples present PL at room temperature. From the theoretical side, first-principles quantum-mechanical techniques, based on density-functional theory at the B3LYP level, have been employed to study the electronic structure of crystalline (BT-c) and asymmetric (BT-a) models. Theoretical and experimental results are found to be consistent and their confrontation leads to an interpretation of the PL apparition at room temperature in the structurally disordered powders.
Resumo:
The nature of intense visible photoluminescence at room temperature of SrWO4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, hand dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The DO experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DO collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DO by developing a grid in the DO Southern Analysis Region (DOSAR), DOSAR-Grid, using a available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DOSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.
Resumo:
Ultrafine PbZr0.20Ti0.80O3 was omorphized through high-energy mechanical milling. The structural evolution through the omorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory frame-work. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence.
Resumo:
Amorphous thin films, based on different network formers, were processed by a soft chemical process called the polymeric precursor method. The resultant amorphous metal oxides, displayed intense photoluminescence (PL) at room temperature. Heat treatment increases the PL intensity of these materials. Theoretical ab initio calculations are correlated with the observed experimental trends. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)