88 resultados para Nonlinear saturation control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, an optimal control strategy that directs the chaotic motion of the Rossler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)