115 resultados para Nil Ideal
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
We analyze the dynamical coupling between energy sources and structural response that must not be ignored in real engineering problems, since real motors have limited output power.
Resumo:
This paper presents some definitions and concepts of the Instantaneous Complex Power Theory [1] which is a new approach for the Akagi's Instantaneous Reactive Power Theory [2].The powers received by an ideal inductor are interpreted and the knowledge of the actual nature of these powers may lead to changes of the conventional electrical power concepts.
Resumo:
This study was undertaken in a closed system with Nile tilapia (Oreochromis niloticus) to examine the effects of total replacement of fish meal (FM) by soybean meal. Nile tilapia fingerlings with an average weight of 5.34+/-0.08 g were hand-fed one of the five isoenergetic (approximate to13.5 MJ digestible energy kg(-1)) and isoproteic (approximate to31% of digestible protein) experimental diets to satiation, six times a day during 85 days in eight replicate fibreglass tanks (six fish per tank). The control diet containing FM was substituted by soybean meal, with and without essential amino acids (lysine, methionine and threonine) or dicalcium phosphate supplementation. The supplemental amino acids were added at levels to simulate the reference amino acid profile of Nile tilapia carcass protein, based on the ideal protein concept. The results showed that soybean meal diet supplemented only with dicalcium phosphate was inferior to the control diet with FM and soybean meal diets supplemented with dicalcium phosphate and essential amino acids. Multiple essential amino acids and dicalcium phosphate incorporation in soybean meal diets was associated with performance, whole-body composition and carcass yield equal to that of the fish fed with the control diet containing FM. These data suggest that a diet with all plant protein source, supplemented with essential amino acids, based on tissue amino acid profile, can totally replace FM in a diet for Nile tilapia, without adverse effects on the growth performance, carcass yield and composition.
Resumo:
This study was carried out to determine the best digestible energy and digestible protein ratio in feeds for Nile tilapia (Oreochromis niloticus) juveniles 30.0 +/- 4.21 g) based on digestible amino acids and the ideal protein concept). Twelve rations were formulated with protein levels 22.0; 26.0; 30.0 and 34.0% of digestible protein and levels 3,000, 3,300 and 3,600 kcal/kg digestible energy. The digestible energy/digestible protein ratio was between 8.94 and 15.19 kcal/g. Three hundred and twenty four tilapias were randomly distributed in thirty six 250 L circular tanks at a density of 9 fish/tank, a total of 12 treatments with three replications. After 60 days, there was no significant difference in weight gain, daily weight gain and feed conversion ratio among the studied treatments. A linear increase was observed in fillet yield with increasing digestible protein. With respect to feed cost/kg weight gain, the treatment with 30.0% DP and 3,000 kcal/kg DE presented low cost and better cost effectiveness index. Therefore, it was concluded that digestible energy did not influence the productive performance parameters and that effective feeds can be formulated with DP levels lower than 34% when feeding juvenile tilapias. The ration should be formulated based on the concept of ideal protein.
Resumo:
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Resumo:
We use the CP trajectory diagram as a tool for pictorial representation of the genuine CP and the matter effects to explore the possibility of an in situ simultaneous measurement of δ and the sign of Δℳ13 2. We end up with a low-energy conventional superbeam experiment with a megaton-class water Cherenkov detector and baseline length of about 700 km. A picturesque description of the combined ambiguity which may arise in simultaneous determination of θ13 and the above two quantities is given in terms of CP trajectory diagram.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.
Resumo:
In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.