112 resultados para NANOCRYSTALLINE BATIO3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nut, calculated using Rietveld refinement, is in a good agreement with results of HRTEM. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of perovskite-type materials such as PbTiO3, BaTiO3, (Pb,La)TiO3, (Pb, La)(ZrTi)O-3, KNbO3, and Pb(Mg,Nb)03 have been attracting great interest for applications like non-volatile memories, ultrasonic sensors and optical devices. Thin film should be epitaxially grown or at least highly textured since the properties of this anisotropic material depend on the crystallographic orientation. For optical devices, in particular, an epitaxial thin film without defects are essential to reduce optical propagation losses. Pb1-xLaxTiO3 (PLT) where x=0, 13 and 27% thin films were prepared by a chemical method (polymeric precursors method), and deposited by the spin coating technique onto substrates of SrTiO3 (STO) and LaAlO3 (LAO). The films were then beat treated at 500 degrees C in a controlled atmosphere of 0,. The orientation degree of the thin films was obtained from rocking curve technique, by means of X-ray difftaction analysis. A microstructural study revealed that the films were crack-free, homogeneous and have low roughness. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two ways of application of intensive milling in ZnO varistors processing were compared. First was intensive milling of mixture of previously prepared constituent phases. In this case, intensive milling was applied only to obtain highly activated nanocrystalline varistor powder mixtures. Second application is intensive milling of simple mixture of oxides that could result not only in activation and formation of nanocrystal line powders, but also in mechanochernical reaction and synthesis of constituent phases. Powders and ceramics samples were characterized by XRD and SEM analysis. as well as by de electrical measurements (nonlinearity coefficients, leakage current and breakdown field). Differences in microstructural and electrical properties of obtained varistors were discussed and optimal milling and processing conditions were recommended. The best electrical characteristics were found in sample ZI -DMCP-m, which exhibited leakage current of 2.5 mu A/cm(2), nonlinear coefficient reaching 58 and breakdown field of 8950 V/cm. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous report we studied theoretically the piezoelectric effect in barium titanate (BaTiO3) [O. Treu Filho, J.C. Pinheiro, R.T. Kondo, J. Mol. Struct. (THEOCHEM), 671 (2004) 71]. In this article we applied the Hartree-Fock (HF) theory in the investigation of piezoelectricity in LaFeO3. Initially, the generator coordinate HF (GCHF) method was used to build 22s14p, 30s19p13d, and 32s24p17d Gaussian basis sets for O(3p), Fe(D-5), and La(D-2) atoms. Then those basis sets were contracted to [7s6p], [13s8p6d], and [18s13p7d], respectively. The quality of the contracted basis sets in polyatomic calculations was evaluated through calculations of total and orbital energies (HOMO and HOMO-1) of (FeO1+)-Fe-2 and (LaO1+)-La-1. Finally, the contracted basis sets were supplemented with polarization and diffuse functions and used to investigate the piezoelectricity in LaFeO3. The calculated properties were dipole moment, total energy, and atomic charges and the analysis of those properties showed that covalent bonds constitute the electronic structure of [LaFCO3](2) fragment. Therefore, it is reasonable to believe that LaFeO3 does not present piezoelectric properties. (C) 2006 Elsevier B.V. All rights reserved.