126 resultados para Myocardial perfusion
Resumo:
Background: The AIN-93 diet was proposed by the American Institute of Nutrition with the objective of standardising studies in experimental nutrition. Our objective was to analyze the effects of AIN-93 diet after myocardial infarction in rats.Methods: Post weaning, the animals were divided into two groups: control (C, n=62), fed the standard diet of our laboratory (Labina); AIN-93 Group (n=70), fed the AIN-93 diet. Achieving 250 g, the animals were subjected to myocardial infarction.Results: Early mortality was increased in AIN-93 animals, associated with lower serum levels of calcium, magnesium, potassium, sodium, and phosphorus. on the other hand, after 90 days, AIN-93 showed smaller normalized left ventricular dimensions. The caloric and carbohydrate intake was smaller, but the fat intake was higher in AIN-93 rats. AIN-93 group also showed increased levels of beta-hydroxyacylcoenzyme A dehydrogenase and citrate synthase. In addition, serum levels of insulin and cardiac levels of malondialdehyde, metalloproteinases-2 and -9, and TNF-alpha and IFN-gamma were decreased in the AIN-93 group.Conclusion: AIN-93 diet increased early mortality, while attenuated the chronic remodeling process after experimental coronary occlusion. Therefore, this diet has biological effects and should be use with attention in this model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Lipocortin 1 reduces myocardial ischemia-reperfusion injury by affecting local leukocyte recruitment
Resumo:
Myocardial reperfusion injury is associated with the infiltration of blood-borne polymorphonuclear leukocytes. We have previous described the protection afforded by annexin 1 (ANXA1) in an experimental model of rat myocardial ischemia-reperfusion (IR) injury. We examined the 1) amino acid region of ANXA1 that retained the protective effect in a model of rat heart IR; 2) changes in endogenous ANXA1 in relation to the IR induced damage and after pharmacological modulation; and 3) potential involvement of the formyl peptide receptor (FPR) in the protective action displayed by ANXA1 peptides. Administration of peptide Ac2-26 at 0, 30, and 60 min postreperfusion produced a significant protection against IR injury, and this was associated with reduced myeloperoxidase activity and IL-1 beta levels in the infarcted heart. Western blotting and electron microscopy analyses showed that IR heart had increased ANXA1 expression in the injured tissue, associated mainly with the infiltrated leukocytes. Finally, an antagonist to the FPR receptor selectively inhibited the protective action of peptide ANXA1 and its derived peptides against IR injury. Altogether, these data provide further insight into the protective effect of ANXA1 and its mimetics and a rationale for a clinical use for drugs developed from this line of research.
Resumo:
Recent interest in the annexin 1 field has come from the notion that specific G-protein-coupled receptors, members of the formyl-peptide receptor (FPR) family, appear to mediate the anti-inflammatory actions of this endogenous mediator. Administration of the annexin 1 N-terminal derived peptide Ac2-26 to mice after 25 min ischemia significantly attenuated the extent of acute myocardial injury as assessed 60 min postreperfusion. Evident at the dose of 1 mg/kg (similar to9 nmol per animal), peptide Ac2-26 cardioprotection was intact in FPR null mice. Similarly, peptide Ac2-26 inhibition of specific markers of heart injury (specifically myeloperoxidase activity, CXC chemokine KC contents, and endogenous annexin 1 protein expression) was virtually identical in heart samples collected from wild-type and FPR null mice. Mouse myocardium expressed the mRNA for FPR and the structurally related lipoxin A(4) receptor, termed ALX; thus, comparable equimolar doses of two ALX agonists (W peptide and a stable lipoxin A4 analog) exerted cardioprotection in wild-type and FPR null mice to an equal extent. Curiously, marked (>95%) blood neutropenia produced by an anti-mouse neutrophil serum did not modify the extent of acute heart injury, whereas it prevented the protection afforded by peptide Ac2-26. Thus, this study sheds light on the receptor mechanism(s) mediating annexin 1-induced cardioprotection and shows a pivotal role for ALX and circulating neutrophil, whereas it excludes any functional involvement of mouse FPR. These mechanistic data can help in developing novel therapeutics for acute cardioprotection.
Resumo:
This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.
Resumo:
OBJETIVO: Estudar a eficácia e a segurança da cardioplegia sanguínea, aterógrada-retrógrada contínua, por meio da avaliação da função ventricular. MÉTODOS: Os coelhos foram divididos em quatro grupos: Controle-C(n=10); isquêmico e cardioplegia cristaloide-IC(n=10; isquêmico e cardioplegia sanguínea-IB(n=10; isquêmico sem cardioplegia-INC(n=10. Após o período isquêmico do protocolo a função ventricular foi analisada pela técnica do balão intra-ventricular. RESULTADOS: a pressão desenvolvida intra-ventricular (IVDP) foi: C(92,90± 6,86mmHg); IC(77,78± 6,15mmHg); IB(93,64 ±5,09mmHg); INC(39,46 ±8,91mmHg) p<0,005. a primeira derivada temporal da pressão ventricular na sua deflexão positiva: C(1137,50± 92,23mmHg/sec); IC(1130,62 ±43,78mmHg/sec); IB(1187,58± 88,38mmHg/sec); INC(620,02± 43,80mmHg/se) p<0,005. A primeira derivada da pressão ventricular na sua deflexão negativa: C(770,00± 73,41mmHg/sec); IC(610,03 ±47,43mmg/sec); IB(762,53 ±46,02mmHg/sec); INC(412,35 ±84,36mmHg/sec) p<0,005. A relação do coeficiente angular logarítmico foi: C(0,108± 0,02); IC(0,159± 0,038); IB(0,114 ±0,016); INC(0,175± 0,038) p<0,05. CONCLUSÃO: No modelo experimental estudado o grupo isquêmico protegido pela cardioplegia sanguínea apresentou melhor função ventricular que os grupos protegidos por cardioplegia cristalóide e não protegido.
Resumo:
The effects of protein-calorie malnutrition (PCM) on heart structure and function are not completely understood. We studied heart morphometric, functional, and biochemical characteristics in undernourished young Wistar rats. They were submitted to PCM from birth (undernourished group, UG). After 10 wk, left ventricle function was studied using a Langendorff preparation. The results were compared with age-matched rats fed ad libitum (control group, CG). The UG rats achieved 47% of the body weight and 44% of the left ventricular weight (LVW) of the CG. LVW-to-ventricular volume ratio was smaller and myocardial hydroxyproline concentration was higher in the UG. Left ventricular systolic function was not affected by the PCM protocol. The myocardial stiffness constant was greater in the UG, whereas the end-diastolic pressure-volume relationship was not altered. In conclusion, the heart is not spared from the adverse effects of PCM. There is a geometric alteration in the left ventricle with preserved ventricular compliance despite the increased passive myocardial stiffness. The systolic function is preserved.
Resumo:
Reports in the literature have shown that acute or chronic zinc administration may cause hyperglycemia, with a fall in serum or insular insulin occurring in experimental animals. on the other hand, under conditions of both acute and chronic hyperglycemia, an increase, a decrease, or a normal level of blood zinc has been observed in studies conducted on humans. Thus, the objective of the investigation described here was to determine the relationship existing among zinc, glucose, and insulin under acute conditions. Thirty-six subjects of both sexes (mean age, 23 yr) were tested at 7:00 A.M. after a 12-h fast. Two antecubital veins of both forearms were punctured and maintained with physiological saline. Three experiments were performed in which zinc was administered orally, and hypertonic glucose and tolbutamid were administered intravenously. Blood samples were then collected over a period ranging from 93 to 240 min after the basal times of - 30 and 0 min. Hyperzincemia did not cause changes in plasma glucose or insulin either in the absence of or during perfusion of glucose. Hyperglycemia, hypoglycemia, and hyperinsulinemia did not modify serum zinc levels. These results demonstrate that acute zinc administration did not change carbohydrate metabolism and that sudden variations in glucose and insulin levels did not modify the serum profile of zinc.