117 resultados para Metal ceramic alloy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The interface formed between the metal and the porcelain of laser-welded Ni-Cr-Mo alloy was studied on a metallurgical basis. The characterization was carried out by using optical microscope, electron scan microscopy and X-ray dispersive spectroscopy techniques and mechanical three-point flexion tests, in the laser-welded region, with and without porcelain. The union of the porcelain with the alloy is possible only after the oxidation of the metallic surface and the subsequent application of a bonding agent known as opaque. The porcelain applied to the base metal and weld bead showed different behaviours - after the flexion test, the base metal showed cracks, while that in the weld bead broke away completely. It was noted that the region subjected to laser welding had lower adherence to the porcelain than the base metal region, due to microstructural refinement of the weld bead. These results can be shown by the X-ray dispersive spectroscopy carried out on the regions studied. The flexion tests demonstrated that the Ni-Cr-Mo alloy subject to laser welding had significant alterations in its mechanical properties after application of the porcelain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A semi solid thin strip continuous casting process was used to obtain 50%wt Pb/50%wtSn strip by single and twin roll processing at speed of 15 m/min. A 50%wt Pb/50%wtSn plate ingot was also cast for rolling conventionally into strips of 1.4 mm thickness and 45 mm width for comparison with those achieved non-conventionally. This hypoeutectic alloy has a solidification interval and fusion temperature of approximately 31 degrees C and 215 degrees C respectively. The casting alloy temperature was around 280 degrees C as measured by a type K immersion thermocouple prior to pouring into a tundish designed to maintain a constant melt flow on the cooling slope during semi solid material production. A nozzle with a weir ensures that the semi solid material is dragged smoothly by the lower roll, producing strip with minimum contamination of slag/oxide. The temperatures of the cooling slope and the lower roll were also monitored using K type thermocouples. The coiled semi solid strip, which has a thickness of 1.5 mm and 45 mm width, was rolled conventionally in order to obtain 1.2 mm thick strip. The coiled thixorolled strip had a thickness of 1.2 mm and achieved practically the same width as the conventional strips. Blanks of 40 mm diameter were cut from the strips in a mechanical press, ready for deep drawing and ironing for mechanical characterization. All the strips achieved from non-conventional processing had the same mechanical performance as those achieved conventionally. The limiting drawing ratio (LDR) achieved was approximately 2.0 for all strips. Microscopy examination was made in order to observe phase segregation during processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interface formed between the metal and the porcelain of a LASER welded Ni-Cr-Mo alloy was studied. The characterization was carried out through optical microscopy, scanning electron microscopy, X-ray dispersive spectroscopy-EDS and mechanical testing by three-point flexion test-TPE in the region LASER welded with and without the porcelain. The porcelain adhesion with the alloy alone is possible after the oxidation of the metallic surface and subsequent application of an adhesive called opaco. The applied porcelain, on the base metal and fusion zone presented some distinct behaviors. After the TPF test the base metal presented fractures while that in the fusion zone was completely gone. One noticed that the region submitted to the LASER welding showed less porcelain adhesion than the region of the base metal due to the microestructural refinement of the fusion zone. These results can be evidenced by the EDS of the studied regions. The TPF had demonstrated that the Ni-Cr-Mo alloy submitted to the LASER welding, undergone significant alterations in its mechanical properties after the application of the porcelain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heavy metal oxide (HMO) glasses have received special attention due to their optical, electrical and magnetic properties. The problem with these glasses is their corrosive nature. In this work, three ceramic crucibles (Al 2O 3, SnO 2 and ZrO 2) were tested in the melting of the system 40 PbO-35 BiO 1.5-25 GaO 1.5 (cation-%). After glass melting, crucibles were transversally cut and analyzed by scanning electronic microscopy (SEM), coupled to microanalysis by energy dispersive spectroscopy (EDS). Results indicated that zirconia crucibles presented the highest corrosion, probably due to its smallest grain size. Tin oxide crucibles presented a low corrosion with small penetration of the glass into the crucible. This way, these crucibles are an interesting alternative to melt corrosive glasses in instead of gold or platinum crucibles. It is important to emphasize the lower cost of tin oxide crucibles, compared to gold or platinum ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance, Si3N4 based ceramics are one of the most suitable cutting tool materials for machining cast iron, nickel alloys and hardened steels. However, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. This necessitates a process optimization when machining superalloys with Si3N4 based ceramic cutting tools. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of α-SiAlON tool in turning Ti-6Al-4V alloy at high cutting conditions, up to 250 m min-1, without coolant. Tool wear, failure modes and temperature were monitored to access the performance of the cutting tool. Test results showed that the performance of α-SiAl0N tool, in terms of tool life, at the cutting conditions investigated is relatively poor due probably to rapid notching and excessive chipping of the cutting edge. These facts are associated with adhesion and diffusion wear rate that tends to weaken the bond strength of the cutting tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μT BS) between a feldspathic ceramic and two composites. Forty blocks (6.0 × 6.0 × 5.0 mm 3) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm2 ± 0.2 mm) were stored in distilled water at 37°C for 30 days and submitted to thermocycling (7,000 cycles; 5°C/55°C ± 1°C). The μT BS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (α = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When metals that present bcc crystalline structure receive the addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, they undergo significant changes in their physical properties because they are able to dissolve great amounts of those interstitial elements, and thus form solid solutions. Niobium and most of its alloys possess a bcc crystalline structure and, because Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this study, mechanical spectroscopy (internal friction) measurements were performed on Nb-8.9wt%Ta alloys containing oxygen in solid solution. The experimental results presented complex internal friction spectra. With the addition of substitutional solute, interactions between the two types of solutes (substitutional and interstitial) were observed, considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for oxygen in this alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.