83 resultados para Manufacturing Process
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
This work evaluates the implementation of Lean Six Sigma into the Steam Turbine’s Blades Manufacturing Process, aiming to improve productivity, quality and operational efficiency. Therefore, several tools have been applied, such as VSM, Spaghetti Diagram, Ishikawa, Pareto, DMAIC, Benchmarking and Control Charts, seeking to propose process improvements, as well as Quality Indicators creation. It was obtained a significant waste reduction throughout the process, achieving a lead time reduction of 42% and 83,41% in transport. Also, were introduced the Lean Thinking concepts, such as pull production and Continuous material flow. At the same time, it was possible to calculate the process capability and the sigma level, evaluating and proposing some improvements
Análise granulométrica do compósito cimentício produzido com adição de resíduos de madeira e escória
Resumo:
Since the early twenty-first century, the construction sector has been the second largest on the rise in the Brazilian industrial sector, with a growth of 1.4% in 2012, and is likely to remain at this level for a long time. However, unlike decades ago, the industry has been seeking in its manufacturing process, sustainable materials, encompassing in their works the concept of sustainability. Thus, the timber sector seeks to satisfy a market increasingly demanding, innovating techniques and utilization being less aggressive to the environment. The purpose of this study was to produce and evaluate the mechanical strength of the composite cement with the addition of wood residues and slag low oven. Therefore, it was made 42 specimen cement-slag-wood, carried out in two steps. Since at the first, it was varied only the slag particle size, and at the second, through the best result of the previous step, it was varied the wood particles granulometry. The mechanical performance of the composite was evaluated by the results obtained in the compression test and the physical test for determining the density of the material. In the first step of the process can be concluded that the best result was achieved with the use of slag particles retained on the 60 mesh sieve. In the second phase of the study concluded that the best results were achieved with wood particles with the large particles, i.e. particles retained on the 10 mesh sieve. Both in the first and in the second step it can be seen that there has been the influence of the particle size of the waste materials. With the obtained results, could be evaluated that the use of waste for the production of cement-slag-wood composite showed lower performance when compared to the results obtained in studies without the use of waste. However, some applications are feasible to be performed with the use of composite wood-cement-slag
Resumo:
The growing demand for quality at competitive prices and fast production process put to the test function in the industrial Maintenance. The need for equipment with high availability to fit this fierce competitiveness makes maintenance becomes essentially reliable. Despite this current context, many companies still have an old view of maintenance, focused only on corrective services, and proposals for change are often neglected due to the sense of urgency day to day. Thus, this study aims to demonstrate through theoretical applicability of simple tool, but of great value in increasing reliability within the maintenance sector of an industry, applying the concepts of Reliability Centered Maintenance – RCM and Analysis tool Failure Modes and Effects – FMEA in equipment of a chemical company directly involved in the manufacturing process of the brake fluid, which this product is used in vehicles around the country. That way, you can identify the types, occurrence and criticality of each failure and evaluate assertively decision making for each device, avoiding unnecessary downtime and potential failures of the same
Resumo:
This paper deals with static analysis and dynamic stress of an ensemble crank and crankshaft, contained within a combustion engine of 4 cylinders. Aimed to illustrate procedures for computer-aided analysis having as goal the optimization of components according to the need for the market demand. Thus, to work in static and dynamic analyzes were summarized the basic theory involved in the calculations and analyzes necessary actuation forces and held a brief introduction about the manufacturing process and forging. Subsequently, it was applied with the use of software in a case the crankshaft, to obtain the performance and structural dynamic thereof. There was a conservative result and critical points in the fillet of the crankshaft bearing, as well as for lubrication hole. It was concluded that there are possibilities for improvements in the manufacturing process and design optimization in order to provide lower criticality and a more robust part
Resumo:
In our country, the majority of freight and people by road happens municipal, state and federal. Thus, the heavy vehicles like buses and trucks are the main means of transporting people and cargo. This graduate work aims to study the process of manufacturing wheels for trucks, because we can see the lack of literature on the manufacturing process of wheels and also the importance of the processes used to manufacture wheels, such as lamination, stamping, puckering, machining, welding and painting
Resumo:
Shearplate is an optical glass plate having two flat surfaces and a small angle between them. The use of a high quality shear plate is essential to implement shear interferometric technique . The shear interferometry is a technique used to evaluate the light beam collimation. In order to guarantee the shearplate quality , the complete manufacturing process must be thoroughly monitored. In the manufacturing process, the first step consisted of the glass selection. The selected glass has been submitted to the process of cutting, gluing, chamfering, grinding and polishing. Each phase has been strictly monitored. The quality of the final result depends extremely on an appropriate starting condition, which arises from the grinding process, as the polishing process only recovers the brightness of the part, acting on a small scale on the wearing off of the part, as well as not changing the structured obtained in the grinding process. Respecting all stages of the manufacturing process, the quality of the part has evolved to a good result. The best result obtained showed PV distance of 162 nm, slightly less than λ / 4. This result is significant because the dimensions of the piece with respect to the dimensions of the polisher what interferes directly in the results. The closer are the dimensions of piece and the dimensions of the polisher, the greater the difficulty in controlling the propagation of errors
Resumo:
Lately, the acceptability of fermented dairy beverages has been increased, due to the nutritional benefits, the practical consumption and the low cost of product for the manufacturers, and consequently for final market price to the consumers. During the manufacturing process, these products can be susceptible to microbiological contamination. The present study investigated the contaminant microbiota in fermented dairy beverages produced by small- and medium-sized companies, by means of analyses on moulds and yeasts counting, determination of the Most Probable Number (MPN) of total and thermo tolerant coliforms, Escherichia coli and Salmonella spp. detection, and determination of pH value. In spite of the absence of Salmonella spp., a high counts of yeasts and moulds were found, and E. coli was detected in five samples (16.67 %); and the sample were classified as “products in poor sanitary conditions”, because they showed thermo-tolerant coliforms counting higher than the standard established by the legislation in force. Therefore, quality programs such as Good Manufacturing Practices (GMP) and Hazard Analysis and Critical Control Points (HACCP) should be employed to prevent any contamination risk, in order to provide safe products to consumers.
Resumo:
In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)
Resumo:
In modern days is not practicable to link productivity and profitability without discuss the manufactured products quality. It is of great importance, mainly if the company is looking for a Global Class title, both the product and the process in what it is been fabricated, to attend all the high level quality requirements. This work aims to define the necessary steps for implementing a new project, including the initial viability studies, and then the staff approval, passing through the development of tools and documents necessary to its fabrication, purchasing goods and services to build the installation, and the final stage of implementation, focused on the manufacturing process quality. It will be highlighted a quality tool that helps do decrease the process risks and thereafter increase its reliability after the implementation
Resumo:
In this work are discussed the main types of rivets, their characteristics and applicability within the Aeronautical Industry branch. Here are highlighted the solid rivets, showing off its layout, forms and limits of installation, that are required by aviation regulators. The riveting is a popular and simple procedure of fixing and joining two or more parts, and like any other manufacturing process is subject to process deviations that in some situations are beyond the limits of tolerance. One of these deviations is when the hole diameter exceeds the one proposed in project and which is limited by the rule of edge distance. The overall objective here is to study a possible solution to this problem: the installation of a rivet that has his diameter previously increased by compression. Observe the hole filling after riveting, detect the presence of cracks, discover the yield curve of the fasteners and their the crushing limits for failure prediction are tools used to verify this proposal. They demonstrate, at the end of study, the inefficiency of this procedure, with results that go against the safe fixing of parts in a structure
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS