85 resultados para Magnetic Fields


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide a simple method for writing the Dirac-Born-Infeld equations of a Dp-brane in an arbitrary static background whose metric depends only on the holographic radial coordinate z. Using this method we revisit the Karch-O'Bannon procedure to calculate the dc conductivity in the presence of constant electric and magnetic fields for backgrounds where the boundary is four- or three-dimensional and satisfies homogeneity and isotropy. We find a frame-independent expression for the dc conductivity tensor. For particular backgrounds we recover previous results on holographic metals and strange metals. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that under certain circumstances, magnetic fields applied perpendicularly to the plane of superconducting films can trigger flux avalanches. In such cases, the penetration has a tree-like profile. However, in samples where a regular array of antidots, ADs, is present, the avalanches follow the rows of ADs as if they were guiding lines for the abrupt penetration. In this work, we used the magnetooptical imaging technique to study the morphology of flux avalanches in two Nb films with a square lattice of square ADs, each one with a different lateral size, and a plain film for reference. We show that the morphology of the flux avalanches is greatly influenced by the size of the interstitial region. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on E b are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic fields can be produced by natural magnets, artificial magnets, and by circulating electric currents in wires and solenoids. An interesting experiment to observe the interaction between the magnetic field and free charges in a conductor, a magnet falling inside a tube made of conductive materials. The slowing down of the magnet by the appearance of a field in the opposite direction to the original one (Lenz's Law) is function the number of free electrons in the conductor and the electrical properties of this. Based on this, the objective of this study is to analyze the relationship between the electrical properties of conductors, copper and aluminum, with magnetic force on a neodymium magnet-iron-boron magnet falling inside a copper tube and aluminum, positioned vertically. In performing this experiment, we observed that it is a demonstration of Lenz-Faraday’s Law

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work will discuss how magnetic fields can be produced, either generated by magnets, natural, artificial, or even by an electric current going through a wire, as discovered by Oersted. Besides the theoretical content, experimental studies on magnetic induction and on the Laws of Faraday and Lenz will be performed. In the Magnetic Induction experiment, the electromotive force generated by varying the flow of the field B in a solenoid, depending on the variation of the current intensity and frequency associated with it will be measured; the experiment on the Laws of Faraday and Lenz the electromotive force produced by the relative movement of the magnet in relation to a coil. Thus, this study experimental verification of magnetic induction using solenoids and magnets; analysis of magnetic induction by Faraday's Law and Lenz's Law