101 resultados para MOTION CAPTURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180, are found to be tridimensional quasi-periodic orbits around the same family of periodic orbits found for the planar case (i = 180 degrees). It was not found any periodic orbit out of the plane associated to such quasi-periodic orbits. The largest region of stable prograde trajectories occurs at i = 60 degrees. Trajectories in such region are found to behave as quasi-periodic orbits evolving similarly to the stable retrograde trajectories that occurs at i = 120 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the influence of motion and initial intra-articular pressure (IAP) on intra-articular pressure profiles in equine cadaver metatarsophalangeal (MTP) joints was undertaken as a prelude to in vivo studies, Eleven equine cadaver MTP joints were submitted to 2 motion frequencies of 5 and 10 cycles/min of flexion and extension, simulating the condition of lower and higher (double) rates of passive motion. These frequencies were applied and pressure profiles generated with initial normal intra-articular pressure (-5 mmHg) and subsequently 30 mmHg intra-articular pressure obtained by injection of previously harvested synovial fluid.The 4 trials performed were 1) normal IAP; 5 cyles/min; 2) normal IAP; 10 cycles/min; 3) IAP at 30 mmHg; 5 cycles/min and 4) IAP at 30 mmHg; 10 cycles/min. The range of joint motion applied (mean +/- s.e.) was 67.6 +/- 1.61 degrees with an excursion from 12.2 +/- 1.2 degrees in extension to 56.2 +/- 2.6 degrees in flexion, Mean pressure recorded in mmHg for the first and last min of each trial, respectively, were 1) -5.7 +/- 0.9 and -6.3 +/- 1.1; 2) -5.3 +/- 1.1 and -6.2 +/- 1.1; 3) 58.8 +/- 8.0 and 42.3 +/- 7.2; 4) 56.6 +/- 3.7 and 40.3 +/- 4.6. Statistical analyses showed a trend for difference between the values for the first and last minute in trial 3 (0.05>P<0.1) with P = 0.1 and significant difference (P = 0.02) between the mean IAP of the first and last min in trial 4. The loss of intra-articular pressure associated with time and motion was 10.5, 16.9, 28.1 and 28.9% for trials 1-4, respectively. As initial intraarticular pressure and motion increased, the percent loss of intra-articular pressure increased.The angle of lowest pressure was 12.2 +/- 1.2 (mean +/- s.e.) in extension in trials 1 and 2, In trials 3 and 4, the lowest pressures were obtained in flexion with the joints at 18.5 +/- 2.0 degrees (mean +/- s.e.). This demonstrated that the joint angle of least pressure changed as the initial intra-articular pressure changed and there would not be a single angle of least pressure for a given joint.The volume of synovial fluid recovered from the MTP joints in trial 3 compared to 4 (trials in which fluid was injected to attain IAP of 30 mmHg) was not significantly different, supporting a soft tissue compliance change as a cause for the significant loss of intra-articular pressure during the 15 min of trial 4.The pressure profiles generated correlate well with in vivo values and demonstrated consistent pressure profiles. Our conclusions are summarised as follows:1. Clinically normal equine MTP joints which were frozen and then later thawed were found to have mostly negative baseline intra-articular pressures, as would be expected in living subjects,2. Alternate pressure profiles of the dorsal and plantar pouch at baseline intra-articular pressure document the presence of pressure forces that would support 'back and forth' fluid movement between joint compartments. This should result in movement of joint fluid during motion, assisting in lubrication and nutrition of articular cartilage,3. If joint pressure was initially greater than normal (30 mmHg), as occurs in diseased equine MTP joints, joint motion further increased joint capsule relaxation (compliance) and, therefore, reduced intra-articular pressure.4. Peak intra-articular pressures reached extremely high values (often >100 mmHg) in flexion when initial pressure was 30 mmHg. Joint effusion pressures recorded for clinical MCP joints are frequently 30 mmHg. These IAP values are expected to produce intermittent synovial ischaemia in clinical cases during joint flexion.5, Additional in vivo studies are necessary to confirm our conclusions from this study and to identify the contributions of fluid absorption and the presence of ischaemia in a vascularised joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial satellites around the Earth can be temporarily captured by the Moon via gravitational mechanisms., How long the capture remains depends on the phase space region where the trajectory is located. This interval of time (capture time) ranges from less than one day (a single passage), up to 500 days, or even more. Orbits of longer times might be very useful for certain types of missions. The advantage of the ballistic capture is to save fuel consumption in an orbit transference from around the Earth to around the Moon. Some of the impulse needed in the transference is saved by the use of the gravitational forces involved. However, the time needed for the transference is elongated from days to months. In the present work we have mapped a significant part of the phase space of the Earth-Moon system, determining the length of the capture times and the origin of the trajectory, if it comes from the Earth direction, or from the opposite direction. Using such map we present a set of missions considering the utilization of the long capture times. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goals of this study were to examine the visual information influence on body sway as a function of self- and object-motion perception and visual information quality. Participants that were aware (object-motion) and unaware (self-motion) of the movement of a moving room were asked to stand upright at five different distances from its frontal wall. The visual information effect on body sway decreased when participants were aware about the sensory manipulation. Moreover, while the visual influence on body sway decreased as the distance increased in the self-motion perception, no effects were observed in the object-motion mode. The overall results indicate that postural control system functioning can be altered by prior knowledge, and adaptation due to changes in sensory quality seem to occur in the self- but not in the object-motion perception mode. (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitational capture is a characteristic of some dynamical systems in celestial mechanics, as in the elliptic restricted three-body problem that is considered in this paper. The basic idea is that a spacecraft (or any particle with negligible mass) can change a hyperbolic orbit with a small positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third body involved in the dynamics. In this way, this force is used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of the most important applications of this property is the construction of trajectories to the Moon. The objective of the present paper is to study in some detail the effects of the eccentricity of the primaries in this maneuver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In March 1993, a specimen of Carcharhinus leucas was captured by fishermen on the south coast of Terceira Island, the Azores Archipelago. Its head was recovered and its jaws were preserved. This is the first capture of this species on an oceanic insular shelf in the Atlantic. The distribution of C. leucas in this ocean is commented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.