54 resultados para MONOXIDE
Resumo:
This paper proposes an analysis of two major polluting elements of the atmosphere of São Paulo city, carbon monoxide (CO) and sulfur dioxide (SO2). This study was performed through analysis of data on the quality of air, by means of published reports and records obtained by experiment using measuring rate monitor for CO2. Atmospheric data were collected and sorted. From this work it was possible to identify the concentration of carbon dioxide in the center of São Paulo on September 14, 2012 using the infrared gas analyzer (IRGA). From the ratios of carbon monoxide and sulfur dioxide spatially analyzed could identify major emitters by comparing records of pollutants and their origin. The analysis makes it possible to map the intensity of air pollution in urban areas, identifying the polluting elements, their issuers and thereby contributes to the current understanding of atmospheric features, bringing a geographical spatial analysis of air pollutants in São Paulo, contributing to awareness of vulnerabilities, enabling a useful tool for planning and maintenance of the urban environment related public policies
Resumo:
Air pollution is an environmental issue worldwide and frequently cause negative effects on population health and ecosystems on cities. The relationship between climate and atmospheric pollution can be used as a surrogate to the intensity of air pollution. The present and quantity of some gases can be used as indicators to air quality: particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and nitrogen dioxide (NO2). Among those gases, CO has its major source within the cities, where automobiles are the main emitter. But measure pollutant concentration are challenging, sometimes because the lack of good equipments due to high costs and of the large variability of models that varies in precision, way of measure and distribution of sellers. Modeling are useful when there are an intend to evaluate air pollution, its sources and evaluate scenarios. This work aims to use CAL3QHCR model developed by the U.S Environmental Protection Agency (EPA) to generate predictive surfaces of CO concentration distribution on a site within Campinas city, located in São Paulo state, Brazil. CAL3QHCR model use data urban automobile circulation to generate spatial results for CO distribution. We observed that the pollution concentration was lower on our modeling than the concentrations measured by Companhia Ambiental do Estado de São Paulo (CETESB), the main environmental company on the São Paulo state. Also the correlation between average estimates of our model and the measure by CETESB was weak, indicating that the model used on this study need to be or better parameterized, or the scale we measured of CO emissions need to be rescaled. Although the model failed to correlate to CETESB data, maybe one that explore the estimated emissions distributed within the sites to understand spatial distributions of CO on the regions. Also, the generated information can also be used to other studies, and come to be useful to explain heat island
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
A study was carried out into the use of charcoal as a supplementary fuel in the iron-ore sintering process. The primary fuel was coke breeze and anthracite with 0, 10, 25, 50 and 100% replacement of the energy input with charcoal to produce sinter. This was achieved by considering the carbon content of each fuel and its corresponding participation on fuel blending, in order to have the same carbon input in each test run. An extensive analysis of the environmental impact was carried out regarding the atmospheric pollutants characterization (dust, sulphur dioxide, nitrogen oxides, carbon monoxide, carbon dioxide, methane, total hydrocarbons, and dioxins and furans). Experimental results indicate that fuel blending where 50% of the heat input was provided by charcoal may be comparable with those using 100% coke, under normal sintering conditions, and may result in a 50% reduction on greenhouse gas emission. It was also observed that while dust, methane and hydrocarbons emissions increased, the total dioxins and furans, expressed as polychlorinated dibenzodioxins/furans, decreased approximately 50% when compared with operation with 100% coke.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Mira are pulsating variable stars in advanced stages of evolution. Their atmospheres are sources of intense absorption bands attributed to molecular titanium monoxide (TiO). It has been suggested that the abundance of TiO reaches its maximum value near the minimum light. In this sense, the study of the processes of formation and destruction of TiO in circumstellar envelopes of Mira stars, not only allows us to understand the physical and chemical processes that occur in these environments, as it allows to verify the correlation between the abundance of TiO and its light curve. However, the main mechanisms of formation and destruction of TiO are poorly known and, consequently, the possible correlation between the abundance of this species and the light curve. In these sense, we studied the main processes of formation and destruction of titanium monoxide in molecular layers of Mira atmospheres and determined its temporal variation as function of the stellar radius. The TiO profile along the radius was expected for the different stellar phase, however its abundance is not enough to explain the light curve. The reasons behind it are discussed in details