73 resultados para METRIC LIE ALGEBRA
Resumo:
Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.
Resumo:
We provide physical interpretation for the four parameters of the stationary Lewis metric restricted to the Weyl class. Matching this spacetime to a completely anisotropic, rigidly rotating, fluid cylinder, we obtain from the junction conditions that one of these parameters is proportional to the vorticity of the source. From the Newtonian approximation a second parameter is found to be proportional to the energy per unit of length. The remaining two parameters may be associated to a gravitational analog of the Aharanov-Bohm effect. We prove, using the Cartan scalars, that the Weyl class metric and static Levi-Civita metric are locally equivalent, i.e., indistinguishable in terms of its curvature.
Resumo:
We propose general three-dimensional potentials in rotational and cylindrical parabolic coordinates which are generated by direct products of the SO(2, 1) dynamical group. Then we construct their Green functions algebraically and find their spectra. Particular cases of these potentials which appear in the literature are also briefly discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.
Resumo:
The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.
Resumo:
We find that within the formalism of coadjoint orbits of the infinite dimensional Lie group the Noether procedure leads, for a special class of transformations, to the constant of motion given by the fundamental group one-cocycle S. Use is made of the simplified formula giving the symplectic action in terms of S and the Maurer-Cartan one-form. The area preserving diffeomorphisms on the torus T2=S1⊗S1 constitute an algebra with central extension, given by the Floratos-Iliopoulos cocycle. We apply our general treatment based on the symplectic analysis of coadjoint orbits of Lie groups to write the symplectic action for this model and study its invariance. We find an interesting abelian symmetry structure of this non-linear problem.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
An affine sl(n + 1) algebraic construction of the basic constrained KP hierarchy is presented. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and it is shown that these approaches are equivalent. The model is recognized to be the generalized non-linear Schrödinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Bäcklund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. Our construction uncovers the origin of the Toda lattice structure behind the latter hierarchy. © 1995 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N = 2 D = 10 supersymmetry algebra with Ramond-Ramond central charges.
Resumo:
In this paper we employ the construction of the Dirac bracket for the remaining current of sl(2) q deformed Kac-Moody algebra when constraints similar to those connecting the sl(2)-Wess-Zumino-Witten model and the Liouville theory are imposed to show that it satisfies the q-Virasoro algebra proposed by Frenkel and Reshetikhin The crucial assumption considered in our calculation is the existence of a classical Poisson bracket algebra induced in a consistent manner by the correspondence principle, mapping the quantum generators into commuting objects of classical nature preserving their algebra.