62 resultados para Loads (forces)
Resumo:
Root resorption is a variable to be considered in induced tooth movement (ITM). It is related to root morphology and alveolar bone crest, and also to the types of forces exerted by mechanotherapy. This histometric study evaluated the predominance of root resorption among roots of different dimensions, following ITM with different types of forces and at different time intervals. The study was conducted on 54 rats divided into three groups, according to the type of force: continuous (CF), continuous interrupted (CIF) and intermittent (IF), at periods of 5, 7 and 9 days. The percentage of resorption between mesiobuccal roots of larger dimension and intermediate roots of smaller dimension was assessed. The evaluations were performed on the AxioVision software, and the non-parametric analysis of variance for repeated measures in independent groups was further applied, consisting of a scheme of two factors, and complemented by the Dunn test at a significance level of 5%. The intermediate roots presented a higher percentage of resorption, which was gradual at the periods evaluated for the three types of forces, but mainly for CF. Comparing the intermediate roots with the mesiobuccal roots, there was a statistically significant difference (p < 0.05) in the CF group at day 7 and day 9, and in the FI group, at day 9. The intragroup analysis evidenced a statistically significant difference (p < 0.05) between the 5th and the 9th day for the intermediate root in the CF group. The intergroup analysis did not reveal any statistically significant difference (p > 0.05) in individually analyzed roots.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Modelagem em 3D de uma patela humana e análise de esforços utilizando o método dos elementos finitos
Resumo:
Throughout the history of medicine surgeons realized the importance of the patella to the functioning of the knee. The main function of the patella is to increase the mechanical efficiency of the quadriceps tendon and knee extensor mechanism. It was found that 50% to 80% of the fractures without deviation of the patella have the transversal pattern, possibly due to excessive tensile forces applied to the extensor mechanism. The purpose of this study is to analyze the loads to which a patella is submitted during a normal extension movement of knee. This analysis will be done by modeling a 3D patella and subsequent load simulation as, described in medical literature, using the finite element method
Resumo:
Structure is the resistant part of a construction that is able to support forces and transmit them to its supports or links. Knowing its importance, it is necessary to do a structural analysis. This study focuses on showing, in a different way, a method of understanding the bending moment and the shear beam diagrams. A real model was developed in laboratory to check what happens when certain loads are placed along. Throughout this study it was possible to verify that the practical application of the theory will provide the classroom a better understanding
Resumo:
In engineering projects, it’s fundamental to determine the active loads in components in order to guarantee acceptable values of safety and reliability according to project specifications. On the other hand, force measurement methods might be very complex and impracticable in some cases and, so that, load cells with eletric resistance strain gages can be applied as a simple and accurate option to measure the required load. The main purpose of this paper is to present the development of a load cell that measures uniaxial forces using electric resistance strain gages without being influenced by the location of the loading in a cantilever beam. For that, it was taken as basis a secondary purpose which is to present a general study of basic and wide concepts about transducers, load cells and extensometers primarily. Information such as: loading and measurements types, characteristics of the presented devices as well as factors that influence its functioning, the most common kinds of Wheatstone bridge links, the main points of a load cell project, cements used to fix extensometers and, finally, the project itself with the tests of the built transducer are presented. By the end of this paper, all the results are shown and analyzed, concluding about the designed load cell and the work itself
Resumo:
Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future
Resumo:
The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.
Resumo:
The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Osseointegrated implants have specific nature distinguish them from natural teeth making them more susceptible to the efforts generated by mastication. The absence of periodontal ligament, which absorbs the masticatory forces and allows the movement of the teeth interfere with the reception of occlusal loads and therefore the predictability of implants. In the boneimplant interface did not occur the phenomena of dissipation of impact, even the movement induced. Thus, during planning and installation of implant prosthesis, the type and characteristics of occlusal pattern adopted should be established with criteria to be no grounds for future failures. In this regard we highlight the occlusal overload generated by several reasons like the presence of premature contacts, interference during motion excursive, deleterious habits and inappropriate extensions on cantilevers. Thus, the objective is to provide a review of the literature regarding the importance of occlusion in oral rehabilitation with implants. Factors to be considered in establishing a favorable occlusion, consistent with prostheses on implants will be described
Resumo:
This article presents the results of research conducted on full-scale models, studying the behavior of steel sleepers under the action of static loads, in vertical, longitudinal and transverse directions. For the research models were run with rails TR-68, fixed with elastic system on seven sleepers each type, separately, embedded in standard ballast with 35 cm height and on the basis of compacted soil with 30 cm thick. For the load tests were constructed using reaction systems of vertical and horizontal forces with the objective of applying the requests. The system of readings and data acquisition was fully computerized, obtaining in real time the values of forces and displacements. The results were compared with those installed in the same way with sleepers of wood, mono-block and bi-block prestressed concrete. The analyzed results provided unprecedented parameters in Brazil and of great importance for the design of modern railway permanent way, using steel sleepers.