49 resultados para Lithium batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Surface transformation with nonthermal plasma may be a suitable treatment for dental ceramics, because it does not affect the physical properties of the ceramic material.Purpose. The purpose of this study was to characterize the chemical composition of lithium disilicate ceramic and evaluate the surface of this material after nonthermal plasma treatment.Material and methods. A total of 21 specimens of lithium disilicate (10 mm in diameter and 3 mm thick) were fabricated and randomly divided into 3 groups (n=7) according to surface treatment. The control group was not subjected to any treatment except surface polishing with abrasive paper. In the hydrofluoric acid group, the specimens were subjected to hydrofluoric acid gel before silane application. Specimens in the nonthermal plasma group were subjected to the nonthermal plasma treatment. The contact angle was measured to calculate surface energy. In addition, superficial roughness was measured and was examined with scanning electron microscopy, and the chemical composition was characterized with energy-dispersive spectroscopy analysis. The results were analyzed with ANOVA and the Tukey honestly significant difference test (alpha=.05).Results. The water contact angle was decreased to 0 degrees after nonthermal plasma treatment. No significant difference in surface roughness was observed between the control and nonthermal plasma groups. Scanning electron microscopy and energy-dispersive spectroscopy images indicated higher amounts of oxygen (O) and silicon (Si) and a considerable reduction in carbon (C) in the specimens after nonthermal plasma treatment.Conclusions. Nonthermal plasma treatment can transform the characteristics of a ceramic surface without affecting its surface roughness. A reduction in C levels and an increase in 0 and Si levels were observed with the energy-dispersive spectroscopy analysis, indicating that the deposition of the thin silica film was efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous communication [1] described the preparation of the double selenates of lanthanum and the alkali metals; the La-Li compound has the formula La2(SeO4)3 · Li2SeO4 · 8H2O. Subsequent reports [2-4] have shown that it was not possible to prepare the Ce-Li, Pr-Li, Nd-Li and Sm-Li double selenates, using the same method [1]. It was possible to isolate the double selenates of all the cerie group lanthanides and lithium not previously described and, also, a La-Li double selenate having a different stoichiometry, using a modified preparation technique. © 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium intercalation into double rare earth chromates was carried out. It was found that the compounds NaxLi1-xLa(CrO4)2 belong to the NaLa(CrO4)2 structural type and may be recommended as fast ionic conductors. At small values of x a third polymorphous modification of LiLa(CrO4)2 can be stabilized. Attempts to intercalate lithium into CsLa(CrO4)2 lead to collapse of the lamellar network with the formation of LaCrO4 and alkaline chromates. Ion exchange Li+/H+ data are consistent with these considerations. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there are two car models that use electricity in their propulsion systems, the electric vehicle and the hybrid electric vehicle. The electric vehicles are classified as vehicles that use electric motors in their propulsion system and batteries as a power source, on the other hand, the hybrid vehicles are classified as vehicles that use both electric motors and internal combustion engines in their propulsion system, using both batteries and líquid fuels as a power source. The main goal of this work is to analyze the characteristics of electric and hybrid electric vehicles and demonstrate the unfeasibility of the electric vehicle in the current economic, political, energetic and environmental brazilian scenario, for this purpose it was realized a study about the current brazilian situation regarding to electricity generation, current conservation status of road network, lack of electrical infrastructure for charging batteries, national lithium reserves, environmental characteristics, tax incentives, economic scenario, oil market and political positioning related to the implantation of electric or hybrid electric fleets in nacional territory. The operational characteristics analysis of electric and hybrid electric vehicles in this current scenario leads to the conclusion that currently a growth of electric vehicles fleets on a national scale is totally impractical in the Brazil, Thus, the introduction of green vehicles probably will occur primarily with hybrid electric models, motivated mainly due the bigger autonomy of this models compared to electric models, lower cost of hybrid electric models compared to electric models, factors related to the lack of recharging infrastructure and also factors related to political positioning