96 resultados para Liquefied natural gas
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.
Resumo:
In this paper, is presented an economical and technical feasibility study of a combined cycle cogeneration system proposed to be used in a pulp plant located in Brazil, where around 95% of country's pulp production is done by the use of Kraft Process. This process allows the use of black liquor and other by-products as fuel. This study is based upon actual data from a pulp plant with a daily production of 1000 tons., that generates part of the energy demanded by the process in a conventional cogeneration system with condensing steam turbine and two extractions. The addition of a gas turbine was studied to compare electricity production level and its related costs between original system and the new one, considering that the former can use industrial by-products and firewood as fuel, when required. Several parameters related to electric generation systems operation and production costs were studied. The use of natural gas in the combined cycle, in comparison with the use of firewood in the conventional system was studied. The advantages of natural gas fuel are highlighted. The surplus availability and the electricity generation costs are presented as a function of pulp and black liquor production.
Resumo:
High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. We examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.
Resumo:
In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
The São Paulo State has 36 million people, 25 million living in three metropolitan areas. Only the São Paulo Metropolitan Region (SPMR) includes the state capital (São Paulo City) plus 38 cities, where ≈ 18 million people live, affected by frequent episodes of ozone, NOx, and fine particulate matter. In 2003, it was estimated that 15.1% of the SPMR vehicles used ethanol and 70.2% used the local gasoline. Natural gas vehicles have witnessed a booming participation in the last years, mainly through conversion of gasoline cars, and the present fleet is almost one million vehicles. To face the problems generated by light vehicles emissions the Federal Government set a program called PROCONVE - Program of Air Pollution Control from Vehicles - in 1986 and since then until now a significant reduction was reached, but the growth of the fleet hides most of the emission cuts. A discussion covers the evolution of the air pollution management in São Paulo; and innovative tools for air pollution management - both for mobile and stationary sources. This is an abstract of a paper presented at the 98th AWMA Annual Conference and Exhibition (Minneapolis, MN 6/21-24/2005).
Resumo:
The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.
Resumo:
An experimental study has been conducted with the objective of investigating the effects of the flame structure in the combustion oscillation conditions into a laboratorial scale cylindrical chamber. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. To analyze the flame structure the image tomographic reconstruction process were used, and the resultant images were associated to the oscillatory conditions (frequency and amplitude) into the combustion chamber. The main conclusions were: 1) when the flame premixed condition increase, for example 60% of the total air flow rate is premixed with LPG, the region of intense energy released is close to burner exit and strong amplitudes of oscillation (close to 50 mbar) were obtained into the chamber; 2) for long flames, predominantly diffusive flames, just weak amplitudes were detected, in the spite of the speaker exiting the premixed flow; 3) when the energy is released distributed through the combustion chamber, the long flame acts like a baffle. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
An expressive amount of produced hydrogen is generated by customers in-situ such as petrochemical, fertilizer and sugarcane industries. However, the most utilized feedstock is natural gas, a non-renewable and fossil fuel. The introduction of biohydrogen production process associated in a sugarcane industry is an alternative to diminish emissions and contribute to create a CO2 cycle, where the plants capture this gas by photosynthesis process and produces sucrose for ethanol production. The cost of production of ethanol has dramatically decreased (from about US$ 700/m3 in 1970s to US$ 200/m3 today), becoming this a good option at near term, inclusively for its utilization by customers localized in main regions (localized especially in regions such as Southeastern Brazil) Also in near future, it will possible the utilization of fuel cells as form of distributed generation. Its utilization could occur specially in peak hours, diminishing the cost of investments in newer transmission systems. A technical and economic analysis of steam reformer of ethanol to hydrogen production associated with sugarcane industry was recently performed. This technique will also allow the use of ethanol when its price is relatively low. This study was based on a previous R&D study (sponsored by CEMIG - State of Minas Gerais Electricity Company) where thermodynamic and economic analyses were developed, based in the development of two ethanol steam reformers prototypes.x In this study an analysis was performed considering the use of bagasse as source of heat in the steam reforming process. Its use could to diminish the costs of hydrogen production, especially at large scale, obtaining cost-competitive production and permitting that sugarcane industry produces hydrogen in large scale beyond ethylic alcohol, anhydrous alcohol (or ethanol) and sugar.
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ