114 resultados para Linear matrix inequalities (LMIs)
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Relaxed conditions for stability of nonlinear continuous-time systems given by fuzzy models axe presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. This result is also used for fuzzy regulators design. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers axe described by LMIs (Linear Matrix Inequalities), that can be solved efficiently using convex programming techniques.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.
Resumo:
In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)